A Synthetic Porphyrin with High Affinity for Lung Cancer Cells and Inflamed Lymphatic Tissue

  • D. A. Cole
  • D. C. Moody
  • L. E. Ellinwood
  • M. G. Klein
  • J. A. Mercer-Smith
  • A. Brumbaugh
  • R. O. Eikleberry
  • D. Lewis
  • G. Saccomanno
  • J. J. Bechtel
  • D. K. Lavallee

Abstract

Investigators have shown that porphyrins will localize in various tissues in the body, especially neoplastic tissue. This has lead to the use of porphyrins in photodynamic therapy to treat malignant tumors. The success of phototherapy has been limited due to the inaccessibility of tumors to sources of fluorescent light. Because of this problem, we have developed a synthetic radiolabeled porphyrin, [5,10,15,20-tetrakis(4-carboxyphenyl) porphinato copper (II), 67CuTCPP]. Studies using the nonmetallated form of this porphyrin (H2TCPP), have demonstrated that H2TCPP has a very high affinity for lung cancer cells. In each case examined (14 patients) neoplastic cells localized more H2TCPP than did normal lung cells (visual examination). In a different set of experiments which examined the uptake of 67CuTCPP in lymphatic tissue, results demonstrated that not only does 67CuTCPP have an affinity for lymph nodes but this affinity increases significantly in inflamed lymph nodes. These results suggest that in addition to using 67CuTCPP to treat lung cancer, 67CuTCPP may be useful in the treatment of cancer which has spread to the lymph nodes.

Keywords

Lymph Node Lung Cancer Cell Inflame Tissue Sputum Sample Popliteal Lymph Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blau, J.N., 1978, Penetration of colloidal carbon through post-capillary venules in lymph nodes and peyer’s patches of the guinea pig: A potential immunogenic route, Br. J. exp. Path., 59: 558.Google Scholar
  2. Cole, D.A., Mercer-Smith, J.A., Norman, J.K., Schreyer, S.A., Buffington, K.P., Roberts, J.C., and Lavallee, D.K., 1990a, Copper-67 Labeled Porphyrin Localization in Inflamed Tissue, in: “Copper Bioavailability and Metabolism”, Kies, C., ed., Plenum Press, New York.Google Scholar
  3. Cole, D.A., Mercer-Smith, J.A., Schreyer, S.A., Norman, J.K., and Lavallee, D.K., 1990b, The Biological Characteristics of a Water Soluble Porphyrin in Rat Lymph Nodes, Nucl. Med. Biol., 17: 457.Google Scholar
  4. Copper Bioavailability and Metabolism, 1990, Kies, C., ed., Plenum Press, New York.Google Scholar
  5. Cortese.D.A.,, Kinsey, J.H., Woolner, L.B., Sanderson, D.R., and Fontana, R.S., 1982, Hematoporphyrin derivative in the detection and localization of radiographically occult lung cancer, Am. Rev. Respir. Dis., 126: 1087.PubMedGoogle Scholar
  6. Edell, E.S. and Cortese, D.A., 1989, Bronchoscopic localization and treatment of occult lung cancer, Chest, 96: 919.PubMedCrossRefGoogle Scholar
  7. Fawwaz, R.A., Hemphill, W., and Winchell, H.S., 1971, Potential Use of Pd109-Porphyrin Complexes for Selective Lymphatic Ablation, J. Nuc. Med., 12: 231.Google Scholar
  8. Fawwaz, R.A., Winchell, H.S., Frye, F., Hemphill, W, and Lawrence, J.H., 1969, Localization of Co-58-and Zn-65-Hematoporphyrin Complexes in Canine Lymph Nodes, J. Nucl. Med., 10: 581.PubMedGoogle Scholar
  9. Figge, F.H.J., Weiland, G.F.S., and Manganiello, L.O.J., 1948, Cancer detection and therapy:affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins, Proc. Soc. Exn. Biol. Med., 68: 640.CrossRefGoogle Scholar
  10. Hopf, F.R. and Whitten, D. G., 1975, Photochemistry of Porphyrins and Metalloporphyrins, in: “Porphyrins and Metalloporphyrins,” K. M. Smith, ed., Elsevier Scientific, New York.Google Scholar
  11. Kato, H. and Cortese, D.A., 1985, Early detection of lung cancer by means of hematoporphyrin derivative fluorescence and laser photoradiation, Clin. Chest Med., 6: 237.PubMedGoogle Scholar
  12. Kato, H., Konaka, C., Ono, J., Matsushima, Y., Nishimiya, K., Lay, J., Sawa, H., Shinohara, H., Saito, T., Kinoshita, K, Tomono, T., Aida, M., and Yoshihiro, H., 1988, Effectiveness of HPD and radiation therapy in lung cancer, in: “Porphyrin Photosensitization”, Kessel, D. and Dougherty, T., eds., Plenum Press, New York.Google Scholar
  13. Lipson, R.L., Baldes, E.J., and Olsen, A.M., 1961, The use of a derivative of hematoporphyrin in tumor detection, J. Natl. Cancer Inst., 26: 1.PubMedGoogle Scholar
  14. Lipson, R.L., Baldes, E.J., and Gray, M.J., 1967, Hematoporphyrin derivative for detection and management of cancer, Cancer, 20: 2255.PubMedCrossRefGoogle Scholar
  15. Mercer-Smith, J.A., Moody, D.C., O’Brien, H.A., and Taylor, W.A., 1984, Synthesis of copper-67 meso-tetra(4-carboxyphenyl) porphine, Abstract NUCL52, American Chemical Society National Meeting, Philadelphia, PA.Google Scholar
  16. Mercer-Smith, J.A., Roberts, J.A., Figard, S.D, and Lavallee, D.K., 1988, The development of copper-67 labeled porphyrin-antibody conjugates, in: “Targeted diagnosis and therapy, Vol. 1, Antibody-mediated delivery systems”, Rodwell, J.T., ed., Marcel Dekker, New York.Google Scholar
  17. Mercer-Smith, J.A., Cole, D.A., Roberts, J.C., Lewis, D., Behr, M.J., and Lavallee, D.K., 1990, The biodistribution of radiocopper-labeled compounds, in: “Copper Bioavailability and Metabolism”, Kies, C, ed., Plenum Press, New York.Google Scholar
  18. Nunn, A.D., 1979, The kinetics of incorporation of In-111 into mTetraphenylporphine, J. Radioanal. Chem., 53: 291.CrossRefGoogle Scholar
  19. Oluwole, S., Fawwaz, R., Kuromoto, N., Reemtsma, K., and Hardy, M., 1985, Selective Lymphoid Irradiation, Transplantation. 40: 146.PubMedCrossRefGoogle Scholar
  20. Pandey, R.K., Smith, K.M., and Dougherty, T.J., 1990, Porphyrin dimers as photosensitizers in photodynamic therapy, J. Med. Chem., 33: 2032.PubMedCrossRefGoogle Scholar
  21. Raman, S. and Pinajian, J., 1969, Decay of 67Cu, J. Nucl. Phys., A131: 393.CrossRefGoogle Scholar
  22. Rassmussen-Taxdal, D.S., Ward, G.E., and Figge, F.H.J., 1955, Flourescence of human lymphatic and cancer tissues following high doses of intravenous hematoporphyrin, Cancer, 8: 78.PubMedCrossRefGoogle Scholar
  23. Robinson, G.D.,Jr., Alavi, A., Vaum, R., and Staum, M., 1986, Imaging of lymph node uptake after intravenous administration of Indium-111 metalloporphyrins, J. Nucl. Med., 27: 239.Google Scholar
  24. Vaum, R., Heindel, N.D., Burns, H.D., and et al,, 1982, Synthesis and evaluation of an In-111-labeled porphyrin for lymph node imaging, J. Pharm. Sci., 71: 1223.Google Scholar
  25. Vincent, R.G., Dougherty, T.J., Rao, U., and Doiron, D.R., 1983, Hematoporphyrin derivative in the diagnosis and treatment of lung cancer, in: “Porphyrin Photosensitization: Advances in Experimental Medicine and Biology”, Kessel, D. and Dougherty, T., eds., Plenum Press, New York.Google Scholar
  26. Wessels, B.W. and Rogus, R.D., 1984, Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies, Med. Phys., 11: 638.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. A. Cole
    • 1
  • D. C. Moody
    • 1
  • L. E. Ellinwood
    • 2
  • M. G. Klein
    • 2
  • J. A. Mercer-Smith
    • 1
  • A. Brumbaugh
    • 1
  • R. O. Eikleberry
    • 1
  • D. Lewis
    • 1
  • G. Saccomanno
    • 2
  • J. J. Bechtel
    • 2
  • D. K. Lavallee
    • 3
  1. 1.Medical Radioisotopes Research Program, INC-11Los Alamos National LaboratoryLos AlamosUSA
  2. 2.St. Mary’s Hospital and ClinicGrand JunctionUSA
  3. 3.Department of ChemistryHunter College — CUNYNew YorkUSA

Personalised recommendations