Advertisement

Metal Organic Vapour Phase Epitaxy for the Growth of Semiconductor Structures and Strained Layers

  • M. R. Leys
Part of the NATO ASI Series book series (NSSB, volume 281)

Abstract

The technological development of semiconductor materials started in the period following the second world war. In the electronics industry, the first transistors were fabricated from germanium, later from silicon. It was soon realized that also the AIII–BV or AII – BVI materials (most often simply termed III–V or II–VI materials) exhibited semiconductive behaviour. The energy difference between the valence band and the conduction band made them candidates for electronic devices which can absorb or emit phonons over a range of frequencies (wavelengths). Direct bandgap materials such as gallium arsenide (GaAs) were suitable for devices in which efficient electron-hole recombinations could take place and high efficiency light emitting devices were a possibility. Stimulated emission was first demonstrated in 1970 with the preparation of the single heterojunction and the double heterojunction laser diodes. These devices are multiple layer structures with a thin waveguide region contained between layers of larger bandgap and different refractive index (for confinement of carriers and radiation, respectively, in the active region). A basic laser diode chip consists of two parallel facets, (110) planes, which are prepared by cleavage and act as mirrors. The Fabry-Perot cavity is defined by these two parallel facets and the passive (cladding) layers. In the longitudinal direction current definition is by mesa etching and/or stripe-contact metallization.

Keywords

Epitaxial Layer Free Convection Misfit Dislocation Gallium Arsenide Partial Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.M. Manasevit, J. Electrochem. Soc. 116 (1969) 1725.CrossRefGoogle Scholar
  2. [2]
    R.D. Dupuis and P.D. Dapkus, Appl. Phys. Lett. 31 (1977) 466.ADSCrossRefGoogle Scholar
  3. [3]
    M. Razeghi, B. de Cremoux and J.P. Duchemin, J. Cryst. Growth 68 (1984) 389.ADSCrossRefGoogle Scholar
  4. [4]
    M.R. Leys, Chemtronics 2 (1987) 155.Google Scholar
  5. [5]
    S.J. Bass, J. Cryst. Growth 31 (1975) 72.CrossRefGoogle Scholar
  6. [6]
    J.P. Duchemin, M. Bonnet and F. Koelsch, J. Electrochem. Soc. 126 (1979) 1134.CrossRefGoogle Scholar
  7. [7]
    P.M. Frijlink, J. Cryst. Growth 93 (1988) 207.ADSCrossRefGoogle Scholar
  8. [8]
    J. van Suchtelen, J.E.M. Hogenkamp, W.G.J.M. van Sark and L.J. Giling, J. Cryst. Growth 93 (1988) 201.CrossRefGoogle Scholar
  9. [9]
    F.C. Eversteijn, P.J. Severin, C.H.J. van den Brekel and H.L. Peek, J. Electrochem. Soc. 117 (1970) 925.CrossRefGoogle Scholar
  10. [10]
    K.F. Jensen, J. Cryst. Growth 98 (1989) 148.ADSCrossRefGoogle Scholar
  11. [11]
    R. Jet Field, J. Cryst. Growth 97 (1989) 739.ADSCrossRefGoogle Scholar
  12. [12]
    J.H. Van der Ven, G.J.M. Rutten, M.J. Raymakers and L.J. Giling, J. Cryst. Growth 79 (1986) 352.Google Scholar
  13. [13]
    C. van Opdorp and M.R. Leys, J. Cryst. Growth 84 (1987) 271.ADSCrossRefGoogle Scholar
  14. [14]
    C.A. Wang, S. Patnaik, J.W. Caunt and R.A. Brown, J. Cryst. Growth 93 (1988) 228.ADSCrossRefGoogle Scholar
  15. [15]
    L.M. Fraas, J. Electron. Mater. 15 (1986) 175.ADSCrossRefGoogle Scholar
  16. [16]
    W.T. Tsang, J. Cryst. Growth 98 (1989) 226.ADSCrossRefGoogle Scholar
  17. [17]
    Gaskill, D.K. et al., J. Cryst. Growth 77 (1986) 418.ADSCrossRefGoogle Scholar
  18. [18]
    Ludowise, M.J. and Cooper, C.B., SPIE 1982, 323, 117.CrossRefGoogle Scholar
  19. [19]
    A. Brauers, O. Kayser, R. Kall, H. Heinecke, P. Balk and H. Hofman, J. Cryst. Growth 93 (1988) 7.ADSCrossRefGoogle Scholar
  20. [20]
    G.B. Stringfellow, J. Cryst. Growth, proceedings ICMOVPE 5, (1990)Google Scholar
  21. [21]
    Bass, S.J., J. Cryst. Growth 47 (1969) 613.ADSCrossRefGoogle Scholar
  22. [22]
    H.M. Manasevit and A.C. Thorsen, J. Electrochem. Soc. 119 (1972) 99.CrossRefGoogle Scholar
  23. [23]
    Glew, R.W., J. Cryst. Growth 77 (1984) 44.ADSCrossRefGoogle Scholar
  24. [24]
    C.H. Chen, et al., J. Cryst. Growth 77 (1986) 11.ADSCrossRefGoogle Scholar
  25. [25]
    Glew, R.W., J. de Physique 43 (1982) 281.Google Scholar
  26. [26]
    T.F. Kuech, E. Veuhoff and B.S. Meyerson, J. Cryst. Growth 68 (1984) 48.ADSCrossRefGoogle Scholar
  27. [27]
    A.P. Roth, R. Yakimova and V.S. Sundaram, J. Cryst. Growth 68 (1984) 65.ADSCrossRefGoogle Scholar
  28. [28]
    J.D. Parsons and F.G. Krajenbrink, J. Cryst. Growth 68 (1984) 60.ADSCrossRefGoogle Scholar
  29. [29]
    D.W. Kisker, J. Cryst. Growth 100 (1990) 126.Google Scholar
  30. [30]
    J.A. Long, V.G. Riggs, A.T. Macrander and W.D. Johnston, J. Cryst. Growth 77 (1986) 42.ADSCrossRefGoogle Scholar
  31. [31]
    M. Akiyama, Y. Kawarada and K. Kaminishi, J. Cryst. Growth 68 (1984) 39.ADSCrossRefGoogle Scholar
  32. [32]
    V. Aebi, C.B. Cooper, R.L. Moon and R.R. Saxena, J. Cryst. Growth 55 (1981) 517.ADSCrossRefGoogle Scholar
  33. [33]
    J. Weber et al, J. Cryst. Growth 100 (1990) 467.ADSCrossRefGoogle Scholar
  34. [34]
    D.J. Schlyer and A.J. Ring, J Electrochem Soc. 124 (1977) 569.CrossRefGoogle Scholar
  35. [35]
    M.R. Leys and H. Veenvliet, J. Cryst. Growth 55 (1981) 145.ADSCrossRefGoogle Scholar
  36. [36]
    D.H. Reep and S.K. Gandhi, J Electrochem Soc. 130 (1983) 675.ADSCrossRefGoogle Scholar
  37. [37]
    M. Tirtowidjojo and R. Pollard, J. Cryst. Growth 93 (1988) 108.ADSCrossRefGoogle Scholar
  38. [38]
    D.K. Gaskill, V. Kolubajev, N. Bottka, R.S. Sillmon and J.E. Butler, J. Cryst. Growth 93 (1988) 127.ADSCrossRefGoogle Scholar
  39. [39]
    R. Luckerath, P. Tommack, A. Hertling, H.J. Koss, P. Balk, K.F. Jensen and W. Richter, J. Cryst. Growth 93 (1988) 151.ADSCrossRefGoogle Scholar
  40. [40]
    K. Saito, E. Tokumitso, T. Akatsuka, M. Miyauchi, T. Yamada, M. Konagai and K. Takahashi, J. Appl. Phys. 64 (1988) 3975.ADSCrossRefGoogle Scholar
  41. [41]
    R. Bhat, J. Electron. Mater. 14 (1985) 433.ADSCrossRefGoogle Scholar
  42. [42]
    T.F. Kuech, E. Veuhoff, T.S. Kuan, V. Deline and P. Potemski, J. Cryst. Growth 77 (1986) 257.ADSCrossRefGoogle Scholar
  43. [43]
    N. Kobayashi and T. Makimoto, Jpn. J. Appl. Phys. 10 (1985) L824.CrossRefGoogle Scholar
  44. [44]
    M.R. Leys, Chemtronics 3 (1988) 179.Google Scholar
  45. [45]
    M.R. Leys, Chemtronics 4 (1989) 31.Google Scholar
  46. [46]
    L.M. Yeddanapalli and C.C. Schubert, J. Chem. Phys. 14 (1946) 1.ADSCrossRefGoogle Scholar
  47. [47]
    A.J. Quimet, Dissertation University of Connecticut, USA, 1962Google Scholar
  48. [48]
    G.C. Osbourne in Semiconductors and Semimetals, Academic Press, New York (1987) 459.Google Scholar
  49. [49]
    M.E. Pistol, M.R. Leys, L. Samuelson, Phys. Rev. B37 (1988) 4664.ADSGoogle Scholar
  50. [50]
    J.W. Matthews in: Epitaxial Growth, Part B, Ed. J.W. Matthews, Academic Press, New York (1975)Google Scholar
  51. [51]
    A. Gustafsson, Masters Thesis, University of Lund, Sweden (1990)Google Scholar
  52. [52]
    D. Hulland and D.J. Bacon, Introduction to dislocations, 3rd ed., Pergamon Press, Oxford (1984).Google Scholar
  53. [53]
    J. Petruzello, M.R. Leys, Appl. Phys. Lett. 53 (1988) 2414.ADSCrossRefGoogle Scholar
  54. [54]
    M.R. Leys, H. Titze, L. Samuelson, J. Petruzello, J. Cryst. Growth 93 (1988) 504.ADSCrossRefGoogle Scholar
  55. [55]
    G.H. Olsen, M.S. Abrahams and J.J. Zamerowski, J. Electrochem. Soc. 121 (1974) 650.CrossRefGoogle Scholar
  56. [56]
    R. People, J.C. Bean, Appl. Phys. Lett 47 (1985) 322.ADSCrossRefGoogle Scholar
  57. [57]
    B.W. Dodson, P.A. Taylor, Appl. Phys. Lett. 49 (1986) 642.ADSCrossRefGoogle Scholar
  58. [58]
    T.M.J. Maree, J.C. Barbour, J.F. van der Veen, K.L. Kavanagh, C.W.R. Bulle-Lieuwma and M.P.A. Viegers, J. Appl. Phys. 62 (1987) 4413.ADSCrossRefGoogle Scholar
  59. [59]
    C.G. Tuppen, C.J. Gibbings and M. Hockly, Journ. Cryst. Growth 94 (1989) 392.ADSCrossRefGoogle Scholar
  60. [60]
    T.G. Andersson, Z.G. Chen, V.D. Kulakovskii, A. Uddin, J.T. Vallin. Appl. Phys. Lett. 51 (1987) 752.ADSCrossRefGoogle Scholar
  61. [61]
    Y. Fukuda, J. Cryst. Growth 100 (1990)Google Scholar
  62. [62]
    E.A. Fitzgerald, J. Vac. Sci. Technol. B7 (1989) 782.Google Scholar
  63. [63]
    F. Turco and J. Massies, Appl. Phys. Lett. 51 (1987) 1989.ADSCrossRefGoogle Scholar
  64. [64]
    A.C. Jones, P.J. Wright, P.E. Oliver, B. Cockayne and J.S. Roberts, J. Cryst. Growth 100 (1990) 395.ADSCrossRefGoogle Scholar
  65. [65]
    L. Pohl, M. Hostalek, H. Luth, A. Brauers and F. Scholz, J. Cryst. Growth, proceedings IC MOVPE V, to be published.Google Scholar
  66. [66]
    S.M. Bedair et al., Appl. Phys. Lett. 47 (1985) 51.ADSCrossRefGoogle Scholar
  67. [67]
    M. Ozeki, N. Ohtsuka, Y. Sakuma and K. Kodama J. Cryst. Growth, proceedings IC MOVPE V, to be publishedGoogle Scholar
  68. [68]
    A. Robertson, T.H. Chiu, W.T. Tsang and J.E. Cunningham, J. Appl. Phys. 64 (1988) 877.ADSCrossRefGoogle Scholar
  69. [69]
    D.E. Aspnes, R. Bhat, E. Colas, V.G. Keramidas, M.A. Koza and A.A. Studna, J. Vac. Sci. Technol. A7 (1989) 711.ADSGoogle Scholar
  70. [70]
    J. Jonsson, K. Deppert, S. Jeppesen, G. Paulsson, L. Samuelson and P. Schmidt, Appl. Phys. Lett. 56 (1990) 1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. R. Leys
    • 1
  1. 1.Semiconductor PhysicsTechnical University of EindhovenEindhovenThe Netherlands

Personalised recommendations