Fabrication of Artificially Layered III–V Semiconductors by Beam Epitaxy and Aspects of Additional Lateral Patterning

  • Klaus Ploog
Part of the NATO ASI Series book series (NSSB, volume 281)


The improvement of epitaxial growth techniques has reached a status where monolayer dimensions in artificially layered semiconductor crystals are being routinely controlled to form a new class of materials with accurately tailored electrical and optical properties /1/. The unique capabilities of the advanced epitaxial growth techniques in terms of spatially resolved materials synthesis has stimulated the inspiration of device engineers to design a whole new generation of electronic and photonic devices based on the concept of band-gap engineering /2/. This concept, also called wavefunction or density-of-states engineering, respectively, relies on the arbitrary modulation of the band-edge potential in semiconductors through the abrupt change of composition (e.g. GaAs/AlAs, Gax In1−x As/InP, GaSb/InAs, Si/Ge, etc.) or of dopant species normal to the growth surface /3/. Applying additional lateral confinement to these artificially layered materials via lithographically defined submicron patterns has produced a new class of exotic semiconductor structures in which the quantum-mechanical properties of the electron (hole) can be fully exploited. The microscopic structuring or engineering of semiconducting solids to within atomic dimensions is thus achieved by the incorporation of interfaces (consisting of abrupt homo- or heterojunctions) into a crystal in well-defined geometrical and spatial arrangements. The electrical and optical properties of these low-dimensional semiconductor structures are then defined locally, and phenomena related to extremely small dimensions (“quantum size effects”) become more important than the actual chemical properties of the materials involved.


Molecular Beam Epitaxy Quantum Wire Reflection High Energy Electron Diffraction Multiple Quantum Well High Electron Mobility Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    For_a survey see: Proc.3rd Int. Conf. Modulated Semicond. Structures [MSS-3], Eds. A. Raymond and P. Voisin (Editions de Physique, Les Ulis, 1987) J. Physique 48, Colloque C5, C5/1-C5/635 (1987); Proc. 4th Int. Conf. Modulated Semicond. Structures [MSS-4], Eds. L.L. Chang, R. Merlin, and D.C. Tsui (North-Holland, Amsterdam, 1990) Surf. Sci. 228 1-578 (1990).Google Scholar
  2. /2/.
    H. Sakaki, Proc. Int. Symp. Foundations Quantum Mechanics, Adv. Microfabr. Microstruct. Phys., Eds. S. Kamefuchi, H. Ezawa, Y. Murayama, M. Namiki, S. Nomura, Y. Ohnuki, and T. Yajima (Phys. Soc. Jpn., Tokyo, 1984) p. 4.Google Scholar
  3. F. Capasso, Science 235, 172 (1987).ADSCrossRefGoogle Scholar
  4. /3/.
    K. Ploog, Angew. Chem. Int. Ed. Engl. 27, 593 (1988).CrossRefGoogle Scholar
  5. /4/.
    L.L. Chang and K. Ploog, Eds., Molecular Beam Epitaxy and Heterostructures (Martinus Nijhoff, Dordrecht, 1985) NATO Adv. Sci. Inst. Ser. E 87, 1-719 (1985).Google Scholar
  6. /5/.
    G.B. Stringfellow, Organometallic Vapor Phase Epitaxy; Theory and Practice (Academic Press, Boston, 1989).Google Scholar
  7. /6/.
    B.A. Joyce, Rep. Progr. Phys. 48, 1637 (1985).ADSCrossRefGoogle Scholar
  8. /7/.
    M.B. Panish and H. Temkin, Annu. Rev. Mater. Sci. 19, 209 (1989).ADSCrossRefGoogle Scholar
  9. /8/.
    W.T. Tsang, in VLSI Electronics; Microstructure Science, Ed. N.G. Einspruch (Academic Press, New York, 1989) Vol. 21, p. 255.Google Scholar
  10. /9/.
    S. Dushman, in Scientific Foundations of Vacuum Technique, Ed. J.M. Laffarty (John Wiley, New York, 1962) p. 80.Google Scholar
  11. /10/.
    For a recent survey see: Proc. 2nd Int. Conf. Chemical Beam Epitaxy 1989 [CBE-2], J. Cryst. Growth 105, 1-398 (1990).Google Scholar
  12. /11/.
    A.Y. Cho and J.R. Arthur, Progr. Solid State Chem. 10, 157 (1975).CrossRefGoogle Scholar
  13. A.C. Gossard, Treat. Mater. Sci. Technol. 24, 13 (1981).Google Scholar
  14. /12/.
    For a recent survey see: Proc. 5th Int. Conf. Molecular Beam Epitaxy [MBE-V], Eds. Y. Shiraki and H. Sakaki (North-Holland, Amsterdam, 1989) J. Cryst. Growth 95, 1-637 (1989).Google Scholar
  15. /13/.
    C.T. Foxon and B.A. Joyce, Current Topics Mater. Sci. 7, 1 (1981).Google Scholar
  16. /14/.
    M. Ilegems, J. Appl. Phys. 48, 1278 (1977).ADSCrossRefGoogle Scholar
  17. /15/.
    D.L. Miller and P.M. Asbeck, J. Appl. Phys. 57, 1816 (1985).ADSCrossRefGoogle Scholar
  18. /16/.
    E. Nottenburg, H.J. Bühlmann, M. Frei, and M. Ilegems, Appl. Phys. Lett. 44, 71 (1984).ADSCrossRefGoogle Scholar
  19. /17/.
    J. Maguire, R. Murray, R.C. Newman, R.B. Beal, and J.J. Harris, Appl. Phys. Lett. 50, 516 (1987).ADSCrossRefGoogle Scholar
  20. /18/.
    L. Gonzales, J.B. Clegg, D. Hilton, J.P. Gowers, C.T. Foxon, and B.A. Joyce, Appl. Phys. A 41, 237 (1986).ADSGoogle Scholar
  21. /19/.
    W.I. Wang, Surf. Sci. 174, 31 (1986).ADSCrossRefGoogle Scholar
  22. H. Nobuhara, O. Wada, and T. Fujii, Electron. Lett. 23, 35 (1987).CrossRefGoogle Scholar
  23. /20/.
    E.H.C. Parker, Ed., The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985) 1–686.Google Scholar
  24. M.A. Herman and H. Sitter, Molecular Beam Epitaxy, Fundamentals and Current Status (Springer-Verlag, Berlin, 1989) Springer Ser. Mater. Sci. 7, 1-382 (1989).CrossRefGoogle Scholar
  25. /21/.
    A.Y. Cho, J. Appl. Phys. 42, 2074 (1971).ADSCrossRefGoogle Scholar
  26. /22/.
    T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and K. Bando, Superlatt. Microstruct. 1, 347 (1985).ADSCrossRefGoogle Scholar
  27. /23/.
    B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B. Böiger, Surf. Sci. 168, 423 (1986).ADSCrossRefGoogle Scholar
  28. /24/.
    B.A. Joyce, J. Zhang, J.H. Neave, and P.J. Dobson, Appl. Phys. A 45, 255 (1988).ADSGoogle Scholar
  29. /25/.
    D.E. Aspnes, IEEE J. Quantum Electron. QE-25, 1056 (1989).ADSCrossRefGoogle Scholar
  30. /26/.
    M.B. Panish, J. Electrochem. Soc. 127, 2729 (1980).CrossRefGoogle Scholar
  31. /27/.
    E. Veuhoff, W. Pletschen, P. Balk, and H. Lüth, J. Cryst. Growth 55, 30 (1981).ADSCrossRefGoogle Scholar
  32. /28/.
    A. Robertson, T.H. Chiu, W.T. Tsang, and J.E. Cunningham, J. Appl. Phys. 64, 877 (1988).ADSCrossRefGoogle Scholar
  33. D.A. Andrews and G.J. Davies, J. Appl. Phys. 67, 3187 (1990).ADSCrossRefGoogle Scholar
  34. /29/.
    Y. Horikoshi and M. Kawashima, J. Cryst. Growth 95, 17 (1989).ADSCrossRefGoogle Scholar
  35. /30/.
    F. Briones, L. Gonzales, and A. Ruiz, Appl. Phys. A 49, 729 (1989).ADSGoogle Scholar
  36. /31/.
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  37. /32/.
    B. Hamilton and A.R. Peaker, Prog. Cryst. Growth Character. 19, 51 (1989).CrossRefGoogle Scholar
  38. /33/.
    K. Ploog, Phys. Scr. T 19, 136 (1987)ADSCrossRefGoogle Scholar
  39. R. Cingolani, K. Ploog, L. Baldassarre, M. Ferrara, M. Lugara, and C. Moro, Appl. Phys. A 50, 189 (1990).ADSGoogle Scholar
  40. /34/.
    K. Ploog, M. Hauser, and A. Fischer, Appl. Phys. A 45, 233 (1988).ADSGoogle Scholar
  41. /35/.
    E.O. Göbel, R. Fischer, G. Peter, W.W. Rühle, J. Nagle, and K. Ploog, in Optical Switching in Low-dimensional Systems, Eds. H. Haug and L. Banyai (Plenum Press, New York, 1989) NATO Adv. Sci. Inst. Ser. B 194, 331 (1989).CrossRefGoogle Scholar
  42. /36/.
    G.H. Li, D.S. Jiang, H.X. Han, Z.P. Wang, and K. Ploog, Phys. Rev. B 40, 10430 (1989).ADSGoogle Scholar
  43. /37/.
    J.B. Xia, Phys. Rev. B 38, 8358 (1988).ADSGoogle Scholar
  44. /38/.
    J. Feldmann, R. Sattmann, E.O. Göbel, J. Kuhl, J. Hebling, K. Ploog, R. Muralidharan, P. Dawson, and C.T. Foxon, Phys. Rev. Lett. 61, 1892 (1989).ADSCrossRefGoogle Scholar
  45. /39/.
    K. Ploog and R. Muralidharan, Def. Sci. J. 39, 367 (1989).Google Scholar
  46. /40/.
    L.N. Pfeiffer, K.W. West, H.L. Störnier, and K.W. Baldwin, Mater. Res. Soc. Symp. Proc. 145, 3 (1989).CrossRefGoogle Scholar
  47. /41/.
    E.F. Schubert, Y. Horikoshi, and K. Ploog, Phys. Rev. B 32, 1085 (1985).ADSGoogle Scholar
  48. E.F. Schubert, J.E. Cunningham, and W.T. Tsang, Phys. Rev. B 36, 1348 (1987).ADSGoogle Scholar
  49. E.F. Schubert, J.E. Cunningham, and W.T. Tsang, Appl. Phys. Lett. 51, 817 (1987).ADSCrossRefGoogle Scholar
  50. /42/.
    L.L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).ADSCrossRefGoogle Scholar
  51. /43/.
    H. Sakaki, T. Matsusue, and M. Tsuchiya, IEEE J. Quantum Electron. QE-25, 2498 (1989).ADSCrossRefGoogle Scholar
  52. /44/.
    T.P.E. Broekaert, W. Lee, and C.G. Fonstad, Appl. Phys. Lett. 53, 1545 (1988).ADSCrossRefGoogle Scholar
  53. /45/.
    E.R. Brown, T.C.L.G. Sollner, C.D. Parker, W.D. Goodhue, and C.L. Chen, Appl. Phys. Lett. 55, 1777 (1989).ADSCrossRefGoogle Scholar
  54. /46/.
    J.F. Whittaker, G.A. Mouron, T.C.L.G. Sollner, and W.D. Goodhue, Appl. Phys. Lett. 53, 385 (1988).ADSCrossRefGoogle Scholar
  55. /47/.
    M.A. Reed, W.R. Frensley, R.J. Matyi, J.N. Randall, and A.C. Seabaugh, Appl. Phys. Lett. 54, 1034 (1989).ADSCrossRefGoogle Scholar
  56. /48/.
    F. Capasso, S. Sen, F. Beltram, L. Lunardi, A. Vengurlekar, P.R. Smith, N.J. Shah, R. Malik, and A.Y. Cho, IEEE Trans. Electron Devices ED-36, 2065 (1989).ADSCrossRefGoogle Scholar
  57. /49/.
    R.F. Kazarinov and R.A. Suris, Fiz. Tekh. Poluprovodn. 5, 797 (1971).Google Scholar
  58. /50/.
    S. Tarucha and K. Ploog, Phys. Rev. B 38, 4198 (1988).ADSGoogle Scholar
  59. /51/.
    S. Tarucha and K. Ploog, Phys. Rev. B 39, 5353 (1989).ADSGoogle Scholar
  60. /52/.
    J. Bleuse, G. Bastard, and P. Voisin, Phys. Rev. Lett. 60, 220 (1988).ADSCrossRefGoogle Scholar
  61. /53/.
    E.E. Mendez, F. Agullo-Rueda, and J.M. Hong, Phys. Rev. Lett. 60, 2426 (1988).ADSCrossRefGoogle Scholar
  62. /54/.
    K. Fujiwara, H. Schneider, R. Cingolani, and K. Ploog, Solid State Commun. 72, 935 (1989).ADSCrossRefGoogle Scholar
  63. /55/.
    H. Schneider, K. Fujiwara, H.T. Grahn, K. von Klitzing, and K. Ploog, Appl. Phys. Lett. 56, 605 (1990).ADSCrossRefGoogle Scholar
  64. /56/.
    J.W. Mathews and A.E. Blakeslee, J. Cryst. Growth 22, 118 (1974).ADSGoogle Scholar
  65. /57/.
    G.C. Osbourn, J. Vac. Sci. Technol. A3, 826 (1985).ADSGoogle Scholar
  66. /58/.
    I.J. Fritz and J.E. Schirber, Cryst. Prop. Prep. 21, 83 (1989) [Trans Tech Publ., Zürich, 1989].Google Scholar
  67. /59/.
    E.P. O’Reilly, Semicond. Sci. Technol. 4, 121 (1989).ADSCrossRefGoogle Scholar
  68. /60/.
    D. Gershoni and H. Temkin, J. Lumin. 44, 381 (1989).CrossRefGoogle Scholar
  69. /61/.
    O. Brandt, L. Tapfer, R. Cingolani, K. Ploog, M. Hohenstein, and F. Philipp, Phys. Rev. B 41, 12599 (1990).ADSGoogle Scholar
  70. /62/.
    R. Cingolani, O. Brandt, L. Tapfer, G. Scarmacio, G.C. La Rocca, and K. Ploog, Phys. Rev. B 42, 3209 (1990).ADSGoogle Scholar
  71. /63/.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).ADSCrossRefGoogle Scholar
  72. /64/.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L 209 (1988).ADSGoogle Scholar
  73. /65/.
    A.D. Wieck and K. Ploog, Appl. Phys. Lett. 56, 928 (1990).ADSCrossRefGoogle Scholar
  74. /66/.
    S. Tarucha, Y. Hirayama, T. Saku, and T. Kimura, Phys. Rev. B 41, 5492 (1990).Google Scholar
  75. /67/.
    D. Heitmann, T. Demel, P. Grambow, and K. Ploog, in Advances in Solid State Physics, Ed. U. Rössler Vieweg, Braunschweig, 1989) Vol. 29, p. 285.Google Scholar
  76. /68/.
    T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64, 788 (1990).ADSCrossRefGoogle Scholar
  77. /69/.
    M. Kohl, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 63, 2124 (1989).ADSCrossRefGoogle Scholar
  78. /70/.
    T. Fukui and H. Saito, J. Vac. Sci. Technol. B 6, 1373 (1988).ADSGoogle Scholar
  79. M. Tsuchiya, P.M. Petroff, and L.A. Coldren, Appl. Phys. Lett. 54, 1690 (1989).ADSCrossRefGoogle Scholar
  80. /71/.
    E. Kapon, S. Simhony, R. Bhat, and D.M. Hwang, Appl. Phys. Lett. 55, 2715 (1989).ADSCrossRefGoogle Scholar
  81. K. Kojima, K. Mitsunaga, and K. Kyuma, Appl. Phys. Lett. 56, 154 (1990).ADSCrossRefGoogle Scholar
  82. /72/.
    F. Capasso, in Physics and Applications of Quantum Wells and Super-lattices, Eds. E.E. Mendez and K. von Klitzing (Plenum Press, New York, 1987) NATO Adv. Sci. Inst. Ser. B 170, 377 (1987).CrossRefGoogle Scholar
  83. /73/.
    T. Ishibashi and Y. Yamauchi, IEEE Trans. Electron Devices ED-35, 401 (1988).ADSCrossRefGoogle Scholar
  84. Y. Yamauchi, K. Nagata, and T. Ishibashi, Inst. Phys. Conf. Ser. 91, 693 (1988).Google Scholar
  85. /74/.
    Y.K. Chen, R.N. Nottenburg, M.B. Panish, R.A. Hamm, and D.A. Humphrey, IEEE Electron Device Lett. EDL-10, 470 (1989).ADSCrossRefGoogle Scholar
  86. /75/.
    L.C. Chin and A. Yariv, J. Lumin. 30, 551 (1985).CrossRefGoogle Scholar
  87. /76/.
    M. Abe, T. Mimura, K. Nishiuchi, N. Yokoyama, in VLSI Electronics: Microstructure Science, Ed. N.G. Einspruch (Academic Press, New York, 1985) Vol. 11, p. 333.Google Scholar
  88. T.J. Drummond, W.T. Masselink, H. Morkoc, Proc. IEEE 74, 773 (1986).ADSCrossRefGoogle Scholar
  89. /77/.
    K. Iga, F. Koyama, and S. Kinoshita, J. Vac. Sci. Technol. A 7, 842 (1989).ADSGoogle Scholar
  90. /78/.
    A. Scherer, J.L. Lewell, Y.H. Lee, J.P. Harbison, and L.T. Florez, Appl. Phys. Lett. 55, 2724 (1989).ADSCrossRefGoogle Scholar
  91. /79/.
    A. Yariv. Appl. Phys. Lett. 53, 1033 (1988).ADSCrossRefGoogle Scholar
  92. /80/.
    K. Kondo, J. Saito, T. Igarashi, K. Nanbu, and T. Ishikawa, J. Cryst. Growth 95, 309 (1989).ADSCrossRefGoogle Scholar
  93. T. Sonoda, M. Ito, M. Kobiki, K. Hayashi, S. Takamiya, and S. Mitsui, J. Cryst. Growth 95, 317 (1989).ADSCrossRefGoogle Scholar
  94. /81/.
    P.C. Chao, M.S. Shur, R.C. Tiberio, K.H.G. Dun, P.M. Smith, J.M. Bailingall, P. Ho, and A.A. Jabra, IEEE Trans. Electron Devices ED-36, 461 (1989).ADSCrossRefGoogle Scholar
  95. /82/.
    P.C. Chao, A.J. Tessmer, K.H.G. Duh, P. Ho, M.Y. Kao, P.M. Smith, J.M. Bailingall, S.M.J. Liu, and A.A. Jabra, IEEE Electron Device Lett. EDL-11, 59 (1990).ADSCrossRefGoogle Scholar
  96. /83/.
    M.A. Reed, J.M. Randall, J.H. Luscombe, W.R. Frensley, R.J. Aggarwal, R.J. Matyi, T.M. Moore, and A.E. Wetzel, in Advances in Solid State Physics. Ed. U. Rössler Vieweg, Braunschweig, 1989) Vol. 29, p. 267.Google Scholar
  97. /84/.
    J.M. Randall, M.A. Reed, and G.A. Frazier, J. Vac. Sci. Technol. B 7, 1398 (1989).Google Scholar
  98. /85/.
    N. Chestnoy, R. Hull, and L.E. Brus, J. Chem. Phys. 85, 2237 (1986).ADSCrossRefGoogle Scholar
  99. A.I. Ekimov, I.A. Kudryavtsev, M.G. Ivanov, and A.L. Efros, J. Lumin. 46, 83 (1990).CrossRefGoogle Scholar
  100. /86/.
    K. Takahashi, H. Tanino, and T. Yao, Jpn. J. Appl. Phys. 26, L97 (1987).ADSCrossRefGoogle Scholar
  101. /87/.
    T.P. Martin, Angew. Chem. Int. Ed. Engl. 25, 197 (1986).CrossRefGoogle Scholar
  102. /88/.
    D.M. Eigler and E.K. Schweitzer, Nature 344, 524 (1990).ADSCrossRefGoogle Scholar
  103. /89/.
    G.D. Stucky and J.E. MacDougall, Science 247, 669 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Klaus Ploog
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart-80Germany

Personalised recommendations