Impurities in Semiconductors

  • H. G. Grimmeiss
  • M. Kleverman
  • J. Olajos
  • P. Omling
  • V. Nagesh
Part of the NATO ASI Series book series (NSSB, volume 281)


A brief outline is presented on recent developments in defect characterization and identification in semiconductors which have been made possible by the application of methods other than junction space charge techniques (JSCT). Chalcogens and several transition metals in silicon are used as examples in order to show how important parameters and properties of defects can be revealed by using spectroscopic methods. One of the methods, namely photothermal ionization spectroscopy is discussed in more detail. Si/Ge is taken as an example to show how JSCT can be used for the study of low-dimensional structures.


Charge State Deep Level Transient Spectroscopy Line Spectrum Fano Resonance Photoionization Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See for example R. H. Bube, Photoconductivity of Solids, John Wiley & Sons, Inc., New York, 1960.zbMATHGoogle Scholar
  2. [2]
    See for example W. Hoogenstraaten, Thesis, University of Amsterdam (1958).Google Scholar
  3. [3]
    G. Björklund and H. G. Grimmeiss, Phys. Status Soldidi 42, K1 (1970).ADSCrossRefGoogle Scholar
  4. [4]
    C. T. Sah, L. Forbes, L. L. Rosier and A. F. Tasch, Solid State Electron. 13, 759 (1970).ADSCrossRefGoogle Scholar
  5. [5]
    D. V. Lang, J. Appl. Phys. 45, 3014 and 3023 (1974).ADSCrossRefGoogle Scholar
  6. [6]
    See for example G. W. Ludwig, Phys. Rev. 137, A1520 (1965).ADSCrossRefGoogle Scholar
  7. [7]
    H. G. Grimmeiss, E. Janzén, H. Ennen, O. Schirmer, J. Schneider, R. Wörner, C. Holm, E. Sirtl and P. Wagner, Phys. Rev. B24, 4571 (1981).ADSGoogle Scholar
  8. [8]
    T. M. Lifshits, N. P. Likhtman and V. I. Sidorov, Fiz. Tekh. Poluprov. 2, 782 (1968).Google Scholar
  9. Sh. M. Kogan and T. M. Lifshits, Phys. Status Solidi (a) 39, 11 (1977) and references therein.ADSCrossRefGoogle Scholar
  10. [9]
    H. J. Queisser, Festkörperprobleme XI, 45 (1971).Google Scholar
  11. [10]
    W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).ADSCrossRefGoogle Scholar
  12. [11]
    W. E. Krag and H.J. Zeiger, Phys. Rev. Lett. 8, 485 (1962).ADSCrossRefGoogle Scholar
  13. [12]
    W. E. Krag, W. H. Kleiner and H. J. Zeiger, Phys. Rev. B33, 8304 (1986).ADSGoogle Scholar
  14. [13]
    H. G. Grimmeiss and E. Janzén, in Defects in Semiconductors, Proc. of the Material Research Society’s Annual Meeting, 1982.Google Scholar
  15. [14]
    E. Janzén, R. Stedman, G. Grossmann and H. G. Grimmeiss, Phys. Rev. 28, 1907 (1984).Google Scholar
  16. [15]
    A. Zunger, Solid State Physics, 39, 275 (1987).CrossRefGoogle Scholar
  17. [16]
    H. G. Grimmeiss, L. Montelius, and K. Larsson, Phys. Rev. 37, 6916 (1988).ADSCrossRefGoogle Scholar
  18. [17]
    M. Scheffler, F. Beeler, O. Jepsen, O. Gunnarsson, O.K. Andersen and C.B. Bachelet, J. Electr. Materials, December 1984.Google Scholar
  19. [18]
    M. Kleverman, J. Olajos, and H. G. Grimmeiss, Phys. Rev. 35, 4093 (1987).ADSCrossRefGoogle Scholar
  20. [19]
    G. Armelles, J. Barrau, M. Brousseau, B. Pajot, and C. Naud, Solid State Commun. 56, 303 (1985).ADSCrossRefGoogle Scholar
  21. [20]
    M. Kleverman, J. Olajos and H. G. Grimmeiss Phys. Rev. B37, 2613 (1988).ADSGoogle Scholar
  22. [21]
    J. Olajos, M. Kleverman and H. G. Grimmeiss, Phys. Rev. B38, 10633 (1988).ADSGoogle Scholar
  23. [22]
    T. Bever, P. Emanuelsson, M. Kleverman, and H. G. Grimmeiss, J. Appl. Phys. Lett 55, 2541 (1989).ADSCrossRefGoogle Scholar
  24. [23]
    E. Janzén, G. Grossman, R. Stedman, and H. G. Grimmeiss, Phys. Rev. 31, 8000 (1985).ADSCrossRefGoogle Scholar
  25. [24]
    K. Huang and A. Rhys, Proc. Roy. Soc. 204, 406 (1950).ADSzbMATHCrossRefGoogle Scholar
  26. [25]
    G. D. Watkins and W. B. Fowler, Phys. Rev. B16, 4524 (1977).ADSGoogle Scholar
  27. [26]
    W. Harrison, Phys. Rev. 104, 1281 (1956).MathSciNetADSCrossRefGoogle Scholar
  28. [27]
    P. Omling, private communication.Google Scholar
  29. [28]
    P. Omling, P. Emanuelsson, W. Gehlhoff and H. G. Grimmeiss, Solid State Commun. 70, 807 (1989).ADSCrossRefGoogle Scholar
  30. [29]
    J. Olajos, B. Bech Nielsen, M. Kleverman, P. Omling, P. Emanuelsson, and H. G. Grimmeiss, Appl. Phys. Lett. 53, 2507 (1988).ADSCrossRefGoogle Scholar
  31. [30]
    G. W. Ludwig and H. H. Woodbury, Solid State Phys. 13, 223 (1962).MathSciNetCrossRefGoogle Scholar
  32. [31]
    H. Feichtinger and R. Czaputa, Appl. Phys. Lett. 39, 706 (1981).ADSCrossRefGoogle Scholar
  33. [32]
    R. Czaputa, H. Feichtinger and J. Oswald, Solid State Comm. 47, 4, 223 (1983).ADSCrossRefGoogle Scholar
  34. [33]
    J. Bleuse, G. Bastard and P. Voisin, Phys.Rev.Lett. 60, 220 (1988).ADSCrossRefGoogle Scholar
  35. [34]
    E. E Mendez, F. Agullô-Rueda. and J. M. Hong, Phys.Rev.Lett. 60, 2426 (1988).ADSCrossRefGoogle Scholar
  36. [35]
    H. Presting, H. G. Grimmeiss, V. Nagesh, H. Kibbel and E. Kasper, Proc. of the 20th ICPS, Thessaloniki, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. G. Grimmeiss
    • 1
  • M. Kleverman
    • 1
  • J. Olajos
    • 1
  • P. Omling
    • 1
  • V. Nagesh
    • 1
  1. 1.Department of Solid State PhysicsUniversity of LundLundSweden

Personalised recommendations