Advertisement

The Valence Sub-Bands of Biased Semiconductor Heterostructures

  • R. Ferreira
  • G. Bastard
Part of the NATO ASI Series book series (NSSB, volume 281)

Abstract

It is now recognised that the envelope function framework(1–3) is a versatile and convenient method to calculate the electronic states of semiconductor heterostructures. In essence this computational scheme relies on the separation between the rapidly varying periodic parts of the Bloch functions, assumed to be the same in each kind of layer, and the more slowly varying envelope functions. The latter experience the potentials arising from the band bending due to charges and the band edge steps when one goes from one layer to the next. Thus, a great deal of the computational complexities is of bulk like origin, i.e. depends upon the fact that the extrema around which one is interested to build the heterolayer eigenstates is non degenerate or degenerate, the local effective mass tensor is scalar or not etc. In this respect, for III–V or II–VI heterolayers which retain the zinc blende lattice, there is a marked difference between the conduction and valence bands. The former is non degenerate (apart from spin) and displays small anisotropy and non parabolicity. The valence band edge instead is fourfold degenerate at the zone center (Γ8 symmetry), which leads to complicated dispersion relations (although quadratic upon the wavevector k)(4).

Keywords

Heavy Hole Resonant Tunnelling Light Hole Double Quantum Bloch Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    M. Altarelli in Semiconductor Superlattices and Heterojunctions (Springer Verlag, Berlin 1986).Google Scholar
  2. 2).
    G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Editions de Physique, Les Ulis, 1988).Google Scholar
  3. 3).
    L.J. Sham, Superl. and Microstr. 5, 335 (1989).ADSCrossRefGoogle Scholar
  4. 4).
    J. M. Luttinger, Phys. Rev. 102, 1030 (1956).ADSzbMATHCrossRefGoogle Scholar
  5. 5).
    A. Twardowski and C. Hermann, Phys. Rev. B 35, 8144 (1987).ADSCrossRefGoogle Scholar
  6. 6).
    H. Chu and Y.C. Chang, Phys. Rev. B 39, 10861 (1989).ADSCrossRefGoogle Scholar
  7. 7).
    R. Ferreira and G. Bastard, submitted to Phys.Rev.B (1990).Google Scholar
  8. 8).
    T. Uenoyama and L. J. Sham, Phys.Rev.Lett. 64, 3070 (1990).ADSCrossRefGoogle Scholar
  9. 9).
    G. Bastard, J. A. Brum and R. Ferreira (1989), to be published in Solid State Physics.Google Scholar
  10. 10).
    G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).MathSciNetADSCrossRefGoogle Scholar
  11. 11).
    R. Tsu and G. Döhler, Phys.Rev.B 12, 680 (1975).ADSCrossRefGoogle Scholar
  12. 12).
    J. Bleuse and P. Voisin, 1988 (unpublished).Google Scholar
  13. 13).
    T. Weil and B. Vinter, App. Phys. Lett. 50, 1281 (1987).see also B. Vinter and F. Chevoir, to be published in the Proceedings of the NATO Workshop on Resonant Tunnelling. El Escorial. (1990).ADSCrossRefGoogle Scholar
  14. 14).
    R. Ferreira and G. Bastard, Europhys.Lett. 10, 279 (1989).ADSCrossRefGoogle Scholar
  15. 15).
    K. Wassel and M. Altarelli, Phys. Rev. B39, 12803 (1989).ADSGoogle Scholar
  16. 16).
    M. G. W. Alexander, M. Nido, W. W. Rühle and K. Köhler, to be published in the Proceedings of the NATO Workshop on Resonant Tunnelling. El Escorial (1990).Google Scholar
  17. 17).
    N. Vodjani, D. Côte, F. Chevoir, D. Thomas, E. Costard, J. Nagle and P. Bois, Semicond. Sci. Technol. 5, 538 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. Ferreira
    • 1
  • G. Bastard
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée l’Ecole Normale SupérieureParisFrance

Personalised recommendations