Advertisement

Variations of Constants and Exact Solutions in Multidimensional Gravity

  • S. B. Fadeev
  • V. D. Ivashchuk
  • V. N. Melnikov
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 56)

Abstract

Constants in any physical theory characterize the stability properties of matter. With the progress of science some theories substitute others, so new constants appear, some relations between them are being established. So, the number of fundamental constants is changing. At present such choice seems more preferable: c, h, e, m e,the Weinberg angle hw,Cabbibo angle hc, QCD cut-off parameter ΛQ C D,G,Hubble constant H, mean density of the Universe ρ, cosmological constant Λ. They may be classified as universal, as constants of interactions, and as constants of elementary constituents of matter [1].

Keywords

Multidimensional Gravity Exact Cosmological Solution Multidimensional Cosmology Fundamental Physical Interaction Covariant Differential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gravitational Measurements, Fundamental Metrology and Constants. Eds.V.de Sabbata and V.N.Melnikov, Kluwer Acad.Publ.Dordtrecht,Holland,1988.Google Scholar
  2. [2]
    P.A.M. Dirac, Nature(London), 139, 321 (1937).Google Scholar
  3. [3]
    R.W. Hellings et.al., Phys.Rev.Lett., 51, 1609 (1983).Google Scholar
  4. [4]
    V.D. Ivashchuk and V.N. Melnikov, Nuovo Cimento B, 102, 131 (1988).Google Scholar
  5. [5]
    Y.-S. Wu and Z. Wang, Phys.Rev.Lett., 57, 1978 (1986).Google Scholar
  6. [6]
    G.F. Chapline and N.S. Manton, Phys.Lett.B, 120, 105 (1983).MathSciNetGoogle Scholar
  7. [7]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys.B, 256, 46 (1985).Google Scholar
  8. [8]
    K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, Nuovo Cimento B, 102, 209 (1988).Google Scholar
  9. [9]
    V.D. Ivashchuk and V.N. Melnikov, Phys.Lett.A, 136, 465 (1989).MathSciNetGoogle Scholar
  10. [10]
    M. Toda, Theory of Nonlinear Lattices ( Berlin, Springer, 1981 );zbMATHCrossRefGoogle Scholar
  11. B. Kostant, Adv.Math. 34 195 (1979);zbMATHCrossRefMathSciNetGoogle Scholar
  12. M.A. Olshanetsky and A.M. Perelomov, Phys.Rep. 71 313 (1981).ADSCrossRefMathSciNetGoogle Scholar
  13. [11]
    N. Bourbaki, Groupes et Algebres de Lie, Ch.4–6, Hermann, Paris,1968.Google Scholar
  14. [12]
    G.W. Gibbons and K. Maeda, Nucl.Phys.B, 298, 741 (1988).MathSciNetGoogle Scholar
  15. [13]
    V.D. Ivashchuk, V.N. Melnikov, Chinese Phys. Lett., 7, 97 (1990).Google Scholar
  16. [14]
    V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, Nuovo Cimento B, 104, 575 (1989).Google Scholar
  17. [15]
    K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, Problems of Gravitation (Plenary Reports of YII Soviet Gray.Conf.), Erevan,ErGU,1989,p.70; Nuovo Cimento B,1990,to appear.Google Scholar
  18. [16]
    S.B. Fadeev, V.D. Ivashchuk and V.N. Melnikov, Nuovo Cimento B,to be published.Google Scholar
  19. ]N. Koblitz, P-adic numbers, p-adic analysis and zeta-functions, Springer, New York, 1977.Google Scholar
  20. [18]
    I.V. Volovich, Class.Quantum Gray., 4 (1987) L83.ADSCrossRefMathSciNetGoogle Scholar
  21. [19]
    P.G.O. Freud and M. Olson, Phys. Lett.B, 199 (1987) 186.ADSCrossRefMathSciNetGoogle Scholar
  22. [20]
    I.Y. Arefeva, B. Dragovich, P. Frampton and I. V. Volovich, Wave Function of the Universe and p-adic Gravity,Steklov Mathematical Institute Preprint, 1990.Google Scholar
  23. [21]
    V.D. Ivashchuk, V.N. Melnikov and S.B. Fadeev, National Workshop on Gravitation and Gauge Theory, Yakutsk, to be published, 1990.Google Scholar
  24. [22]
    S.B. Fadeev, V.D. Ivashchuk and V.N. Melnikov, Chin. Phys. Lett., 1991, to be published.Google Scholar
  25. [23]
    S.Majid, Int.J.Mod.Phys.A,5 (1990) 191.Google Scholar
  26. [24]
    L.Alvarez-Gaume, C. Gomez and G. Sierra, Duality and Quantum Groups, CERN-TH.5369/89.Google Scholar
  27. [25]
    A. Connes, Non-commutative Differential Geometry, IRES 62(1986).Google Scholar
  28. [26]
    J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, CERN-TH-5697/90.Google Scholar
  29. [27]
    D. Bernard and A. Leclair, Phys.Lett.B, 227 97 (1989).MathSciNetGoogle Scholar
  30. [28]
    H.J. Vega and N. Sanchez, Phys.Lett.B, 216 97 (1989).ADSCrossRefMathSciNetGoogle Scholar
  31. [29]
    G.E. Andrew, q-series, their development and application in analysis, number theory, combinatorics, physics and computer algebra, AMS Regional Conference Series 66 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • S. B. Fadeev
    • 1
  • V. D. Ivashchuk
    • 1
  • V. N. Melnikov
    • 1
  1. 1.USSR State Commitee for StandardsMoscowUSSR

Personalised recommendations