Some Ideas on the Cosmological Constant Problem

  • G. Veneziano
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 56)

Abstract

In this talk I shall report on some ideas for explaining the experimental smallness of the cosmological constant (CC).

Keywords

Saddle Point Cosmological Constant Quantum Gravity Conformal Factor Euclidean Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Einstein, Sitz. Ber. Preuss. Akad. Wiss. (1917) 142.Google Scholar
  2. [2]
    For a nice recent review, see S. Weinberg, “The Cosmological Constant Problem”, Morris Loeb Lectures in Physics, Harvard University, Univ. of Texas preprint UTTH12–88 (1988).Google Scholar
  3. [3]
    See, e.g., Inflationary Cosmology, Editors L. Abbott and So.Y. Pi, World Scientific Publishing Co. (1986).Google Scholar
  4. [4]
    E. Baum, Phys. Lett. 133B (1983) 185.MathSciNetGoogle Scholar
  5. [5]
    S.W. Hawking, Phys. Lett. 134B (1984) 403.Google Scholar
  6. [6]
    S. Coleman, Nucl. Phys. B310 (1988) 643.ADSCrossRefGoogle Scholar
  7. [7]
    G.W. Gibbons, S.W. Hawking and M.J. Perry, Nucl. Phys B138 (1978) 141;Google Scholar
  8. S.W. Hawking, Nucl. Phys. B144 (1978) 349, B239 (1984) 257;Google Scholar
  9. J.B. Hartle and S.W. Hawking, Phys. Rev. D28 (1983) 2960.ADSMathSciNetGoogle Scholar
  10. [8]
    S.W. Hawking, Phys. Lett. 135B (1987) 337; Phys. Rev. D37 (1988) 904;Google Scholar
  11. S.B. Giddings and A. Strominger, Nucl. Phys. 306 (1988) 890.ADSCrossRefMathSciNetGoogle Scholar
  12. [9]
    I. Klebanov, L. Susskind and T. Banks, Nucl. Phys. B317 (1989) 665.ADSCrossRefMathSciNetGoogle Scholar
  13. [10]
    W. Fischler, I. Klebanov, J. Polchinski and L. Susskind,Nucl. Phys. B327 (1989) 157.MathSciNetGoogle Scholar
  14. [11]
    G. Veneziano, Mod. Phys. Lett. 4A (1989) 695.ADSCrossRefMathSciNetGoogle Scholar
  15. [12]
    W.G. Unruh, “Quantum Coherence, Wormholes, and the Cosmological Constant”, Santa Barbara preprint NSF-ITP-88–168 (1988).Google Scholar
  16. [13]
    S.W. Hawking, “Do Wormholes Fix the Constants of Nature?” DAMTP preprint (1989).Google Scholar
  17. [14]
    G. Veneziano, Invited Talk at the Annual Meeting of the Italian Phys. Soc. (Naples, Oct. 1987 );Google Scholar
  18. D.J. Gross, Proc. XXIVth Int. Conf. on High Energy Physics, (Munich, Aug. 1988, R. Kotthaus and J.H. Kuhn Eds., Springer Verlag Publ. Co. ) p. 310.Google Scholar
  19. [15]
    D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B216 (1989) 41;Google Scholar
  20. G. Veneziano, Proc. of Superstring’89 Workshop, Texas Aand M University, R. Arnowitt et al. Eds., World Scientific, Singapore, 1990 ), p. 86.Google Scholar
  21. [16]
    T.R. Taylor and G. Veneziano, Phys. Lett. 212B (1988) 147;Google Scholar
  22. R. Brandenberger and C. Vafa, Nucl. Phys. B316 (1988) 391;ADSCrossRefMathSciNetGoogle Scholar
  23. J.J. Atick and E. Witten, Nucl. Phys. 310 (1988) 291;ADSCrossRefMathSciNetGoogle Scholar
  24. K. Konishi, G. Paffuti and P. Provero, Phys. Lett. B234 (1990) 276.MathSciNetGoogle Scholar
  25. [17]
    R. Petronzio and G. Veneziano, Mod. Phys. Lett. A2 (1987) 707, and references therein.Google Scholar
  26. [18]
    S. Coleman, private communication.Google Scholar
  27. [19]
    S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.ADSGoogle Scholar
  28. [20]
    T.R. Taylor and G. Veneziano, Phys. Lett. 228B (1988) 480.Google Scholar
  29. [21] S.M. Christensen and M.J. Duff, Nucl. Phys. B170 (1980)
    ; E.S. Fradkin and A.A. Tseytlin, Nucl. Phys. B201 (1982) 469.ADSCrossRefGoogle Scholar
  30. [22]
    T.R. Taylor and G. Veneziano, Nucl. Phys. B345 (1990) 210.ADSCrossRefMathSciNetGoogle Scholar
  31. [23]
    G. Vilkovisky, in “Quantum Theory of Gravity”, S.M. Christensen Ed., (Adam Hilger, Bristol, 1984) p. 169; Nucl. Phys. B234 (1984) 509;Google Scholar
  32. B.S. DeWitt in “Architecture of Fundamental Interactions at Short Distances”, Les Houches, Session XLIV, P. Ramond and R. Stora, Eds., ( Elsevier Science Pub. Co., 1987 ) p. 1023.Google Scholar
  33. [24]
    M. Kâc, Amer. Math. Monthly 73 (1966) 1.MATHCrossRefGoogle Scholar
  34. [25]
    B.S. De Witt, Phys. Rev. 162 (1967) 1239.Google Scholar
  35. [26]
    S. Coleman, The Uses of Instantons in “The Whys of Subnuclear Physics”, (Erice 1977, Plenum Publishing Co., New York, 1979 ).Google Scholar
  36. [27]
    S. Dimopoulos and H. Georgi, Phys. Lett. B117 (1982) 287.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. Veneziano
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations