Pre-Post-History of Tolman’s Cosmos

  • E. L. Schucking
  • S. Lauro
  • J.-Z. Wang
Part of the Ettore Majorana International Science Series book series (EMISS, volume 56)


A unique extension of Tolman’s radiation cosmos with positive curvature is given based on its projective structure. The completed compactified manifold is a projective space P 4. The cosmologic singularity is a S 3 bounding the non-orientable space-time, which is a four-dimensional Möbius bubble enclosed in a solid ball of four-dimensional time. Complex extension of the manifold leads to a Mähler metric on CP 4, which is invariant under U4.


Projective Space Projective Structure Unique Extension Complex Extension Cosmologic Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspray W. and Kitcher P., 1988, “History and Philosophy of Modem Mathematics,” Univ. of Minnesota Press.Google Scholar
  2. Busemann, H. and Kelly, P.J., 1953, “Projective Geometry and Projective Metrics,” Academic Press, New York.zbMATHGoogle Scholar
  3. Chem, S.S., 1979, “Complex Manifolds,” Springer, New York.Google Scholar
  4. Davis, P.C.W., 1974, “The Physics of Time Asymmetry,” University of California Press, Berkeley and Los Angeles. Also as paperback (1977).Google Scholar
  5. Dirac, P.A.M., 1968, The Scientific Work of George Lemaitre, Pontificae Academiae Scien-’ tiarium Commentarii, Vol II, 11: 1–20.Google Scholar
  6. Ehlers, J. and Kohler, E., 1977, J. Math. Physics 18: 2014.ADSzbMATHCrossRefGoogle Scholar
  7. Fubini, G., 1903, Atti Inst. Veneto 6: 501.Google Scholar
  8. Gamow, G., 1961, “The Creation of the Universe,” Viking, New York, pVII.Google Scholar
  9. Geroch, R., 1979, “General Relativity,” S.W. Hawking and W. Israel, ed., Cambridge University Press, Cambridge.Google Scholar
  10. Goldberg, S., 1962, “Curvature and Homology,” Academic Press, New York. Also reprinted by Dover.zbMATHGoogle Scholar
  11. Hawking, S.W. and Ellis, G.F.R., 1973, “The Large Scale Structure of Space-time,” Cambridge University Press, Cambridge.zbMATHCrossRefGoogle Scholar
  12. Hawking, S.W. and Israel, W., 1979, “General Relativity,” Cambridge Univ. Press, Cambridge. Jordan, P., 1952, “Schwerkraft und Weltall,” Vieweg. Braunschweig, p 88.Google Scholar
  13. Miller, E., 1933, Abh. Math. Sem., Hamburg, 9: 173.Google Scholar
  14. Kerszberg, P., 1989, “The Invented Universe,” Clarendon Press, Oxford.Google Scholar
  15. Klein, F., 1893, Math. Annalen 43:63. Reprint of 1872 Erlanger Programm.CrossRefGoogle Scholar
  16. Klein, F., 1928, “Vorlesungen über Nicht-Euklidische Geometrie,” Springer, Berlin. Laura, S., 1983, PhD thesis, NYU.Google Scholar
  17. Lauro, S. and Schucking, E.L., 1985, Int. J. Theor. Phys., 24: 367.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Lebovitz, N. et al. eds., 1978, “Theoretical Principles in Astrophysics and Relativity,” University of Chicago Press, Chicago, Illinois.Google Scholar
  19. Lemaitre, G., 1931a, The Expanding Universe, Monthly Not. Roy. Astr. Soc., 91: 490–501.ADSzbMATHGoogle Scholar
  20. Lemaitre, G., 1931b, The Beginning of the World from the Point of View of Quantum Theory, Nature, 127: 706.ADSzbMATHCrossRefGoogle Scholar
  21. Lemaitre, G., 1933, L’univers en Expansion, Ann. Soc. Sci. Brux., 53 (A): 51–85.Google Scholar
  22. Lemaitre, G., 1950, “The Primeval Atom,” Van Nostrand, New York.Google Scholar
  23. Lemaitre, G., 1958, Rencontres avec Einstein, Rev. Quest. Sci., 56, 129–32.Google Scholar
  24. Lichnerowicz, A., 1955, “Theories Relativistes de la Gravitation et de l’Electromagnetisme,” Masson et Cie, Paris.Google Scholar
  25. Naber, G., 1988, “Spacetime and its Singularities, an Introduction,” Cambridge Univ. Press, Cambridge.Google Scholar
  26. North, J., 1965, “The Measure of the Universe,” Clarendon Press, Oxford.Google Scholar
  27. O’Raifeartaigh, 1972, “General Relativity,” Clarendon Press, Oxford.Google Scholar
  28. Peebles, P.J., 1984, Impact of Lemaitre’s Idea on Modem Cosmology, in: “The Big Bang and George Lemaitre,” A. Berger, ed., Reidel, Dordrecht, 23–30.Google Scholar
  29. Penrose, R., 1965, Phys. Rev. Lett., 14: 57.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  30. Penrose, R. and Rindler, W., 1984, “Spinors and Space-time,” Vol. 1 and 2, Cambridge Univ. Press, Cambridge.zbMATHCrossRefGoogle Scholar
  31. Penzias, A., 1972, “Cosmology, Fusion, and Other Matters,” George Gamow Memorial Volume, F. Reines, ed., Colorado Associated Univ. Press. See also Chapter One by R.A. Alpher and R. Herman and literature there.Google Scholar
  32. Schmidt, B.J., 1971, J. Gen. Rel. and Gray., 1: 169.Google Scholar
  33. Schmidt, B.J., 1972, Comm. Math. Phys., 29: 49.ADSzbMATHCrossRefGoogle Scholar
  34. Schmidt, B.J., 1974, Comm. Math. Phys., 36: 73.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  35. Study, E., 1905, Math. Annalen, 60: 321.zbMATHCrossRefMathSciNetGoogle Scholar
  36. Tolman, R.C., 1934, “Relativity, Thermodynamics and Cosmology,” Oxford Univ. Press, Oxford, England, Reprinted by Dover Publications, Inc., New York 1987.Google Scholar
  37. Wang, J.-Z., 1986, PhD thesis, NYU.Google Scholar
  38. Yaglom, I.M., 1988, “Felix Klein and Sophus Lie,” Birkhäuser, Boston.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. L. Schucking
    • 1
  • S. Lauro
    • 2
  • J.-Z. Wang
    • 1
  1. 1.Department of PhysicsNew York UniversityNew YorkUSA
  2. 2.Department of PhysicsSt. John’s UniversityNew YorkUSA

Personalised recommendations