The Role of Asphaltene Aggregation in Viscosity Variation of Reservoir Hydrocarbons and in Miscible Processes

  • V. A. Kamath
  • M. R. Islam
  • S. L. Patil
  • J. C. Jiang
  • M. G. Kakade


The variation of oil viscosity with depth and/or location has been reported in many reservoirs around the world. This paper examines the role of asphaltene aggregation in the variation of viscosity of reservoir fluids. We conclude that the viscosity of heavy oils is dependent upon the extent of asphaltene aggregation rather than asphaltene concentration alone. A modified Einstein equation has been used to predict the oil viscosity as a function of asphaltene concentration and molecular weight which govern the extent of asphaltene aggregation.


Solubility Parameter Dilution Ratio Asphaltene Precipitation Asphaltene Deposition Experimental Viscosity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sage, B. H., Lacey, W. N., “Gravitational Concentration Gradients in Static Columns of Hydrocarbon Fluids”, Trans. AIME, 132, 12–131,1939.Google Scholar
  2. 2.
    Hunt, M., “Petroleum Geochemistry and Geology,” W. H. Freeman and Co., San Francisco, pp. 281–291, 1979.Google Scholar
  3. 3.
    Schulte, A. M., “Compositional Variations Within a Hydrocarbon Column Due to Gravity,” SPE 9235, 1980.Google Scholar
  4. 4.
    Patel, M. A., “Determination of Viscosities of Oil from Mannville Formation Oil Sand,” Alberta Research Council Report, October, 1973.Google Scholar
  5. 5.
    Hirschberg, A., “The Role of Asphaltenes in Compositional Grading of a Reservoir’s Fluid Column,” SPE 13171, 1984.Google Scholar
  6. 6.
    Mack, C., “Colloid Chemistry of Asphalts,” J. Phys. Chem., 36, 2901, 1932.CrossRefGoogle Scholar
  7. 7.
    Waxman, M. H., Deeds, C. T., Closmann, P. J., “Thermal Alteration of Asphaltenes in Peace River Tars,” SPE 9510, 1980.Google Scholar
  8. 8.
    Kitzan, P., Parson, L. J., Quoted in “The Thermodynamicand Transport Properties of Bitumens and Heavy Oils,” AOSTRA, 1984.Google Scholar
  9. 9.
    Dealy, J. M., “Rheological Properties of Oil Sands Bitumens,” Can. J. of Chem. Eng., 57, 677–683, 1979.CrossRefGoogle Scholar
  10. 10.
    Data, P, “Rheological Studies on Asphaltic Crude Oils of California,” M.Sc. Thesis, University of California, 1962.Google Scholar
  11. 11.
    Algelt, K. H., Harle, O. L, “The Effect of Asphaltenes on Alphalt Viscosity,” Ind. Eng. Chem. Prod. Res. Dev., 14(4), 240–246,1975.CrossRefGoogle Scholar
  12. 12.
    Einstein, A., Ann. Phys. Leipzig 19, 289, 1906.Google Scholar
  13. 13.
    Ber., 63, 222, 1930; quoted by Mack, C, J. Phys. Chem., 36, 2901, 1932.Google Scholar
  14. 14.
    Gillespie, T. “The Effect of Aggregation and Particle Size Distribution on the Viscosity of Newtonian suspensions,” J. Colloid and Interface Science, 94(1), 1983.Google Scholar
  15. 15.
    Haskett, C. E. and Tartera, M., “A Practical Solution to the Problem of Asphaltene Deposits — Hassi Messahoud Field, Algeria,” J. Pet. Tech., pp. 387-391, April, 1965.Google Scholar
  16. 16.
    Lichaa, P. M., “Asphaltene Deposition Problem in Venezuela Crudes — Usage of Asphaltene in Emulsion Stability Oil Sands,” SPEJ, pp. 609-624, 1977.Google Scholar
  17. 17.
    Kawanaka, S., Park, S. J., and Mansoori, G. A., “The Role of Asphaltene Deposition in EOR Gas Flooding: A Predictive Technique,” SPE/DOE Paper #17376, SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa, OK, pp. 617-625, April 17-20, 1988.Google Scholar
  18. 18.
    Harvey, M.T. Jr., Shelton, L. J., and Kelm, C. H., “Field Injectivity Experiences with Miscible Recovery Projects Using Alternate Rich Gas and Water Injection,” J. Pet.Tech., pp. 1051-1055, Sept., 1977.Google Scholar
  19. 19.
    Danesh, A., Krinis, D., Henderson, G. D. and Peden, J. M., “Asphaltene Deposition in Miscible Gas Flooding of Oil Reservoirs,” Ind. Chem. Eng. Prod. Res. Dev., Vol. 66, No. 7, pp. 339–344, 1988.Google Scholar
  20. 20.
    Stalkup, F. I., “Miscible Displacement,” SPE Monograph, June, 1983.Google Scholar
  21. 21.
    Sharma, A. K., Patil, S. L, Kamath, V. A. and Sharma, G. D., “Miscible Displacement of Heavy West Sak Crude by Solvents in Slim Tube,” SPE 18761, Proceedings of 1989 SPE California Regional Meeting, Bakersfield, CA, April 5-7, 1989.Google Scholar
  22. 22.
    Hirshberg, A., deJong, L.N.J., Schipper, B.A. and Meijer, J.G., “Influence of Temperature and Pressure on Asphaltene Flocculation”, SPEJ, No. 6, pp 283-293, 1984.Google Scholar
  23. 23.
    Burke, N.E., Hobbs, R.D. and Kashou, S.F., “Measurement and Modeling of Asphaltene Precipitation from Live Reservoir Systems,” SPE 18273, Proceedings of 63rd Annual Technical Conference and Exhibition of SPE, Reservoir Engineering Volume, Houston, TX, pp 113-126, Oct 2-5, 1988.Google Scholar
  24. 24.
    Coats, K.H., “Equation of STate PVT Program: Users Manual”, Scientific Software Intercomp, Denver, Colorado, Nov 1984.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • V. A. Kamath
    • 1
  • M. R. Islam
    • 1
  • S. L. Patil
    • 1
  • J. C. Jiang
    • 1
  • M. G. Kakade
    • 1
  1. 1.Petroleum Development LaboratoryUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations