Data Verification

  • Rudolf Avenhaus

Abstract

In the preceding chapter we assumed that the data necessary for the establishment of a material balance are correct except for measurement errors—in other words that these data are not falsified intentionally. There are cases where there is no reason to take into account the possibility of falsification, e.g., all cases of balances of mass flows existing in nature. However, there are also cases where such a data falsification cannot be excluded; these are all cases where the material balance principle is used as a control or safeguards tool.

Keywords

Pure Strategy False Alarm Probability Data Verification Optimal Sample Size Falsify Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MIL-STD-105D, Sampling Procedures and Tables for Inspection by Attributes, U.S. Government Printing Office, Washington (1963).Google Scholar
  2. 2.
    R. Avenhaus, Material Accountability—Theory, Verification, Application, Monograph No. 2 of the International Series on Applied Systems Analysis, Wiley, Chichester (1978).Google Scholar
  3. 3.
    I. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I, Springer, Berlin (1970).CrossRefGoogle Scholar
  4. 4.
    F. J. Anscombe and M. D. Davis, Inspection against Clandestine Rearmament, in Application of Statistical Methodology to Arms Control and Disarmament, Mathematica, Princeton, New Jersey, Contract NO. ACDA/ST-3, pp. 69-166 (1963).Google Scholar
  5. 5.
    R. Avenhaus and E. Höpfinger, Optimal Sampling for Safeguarding Nuclear Material, Oper. Res. Verfahren 12, 1–12 (1972).Google Scholar
  6. 6.
    International Atomic Energy Agency, IAEA Safeguards Technical Manual, Part F, Statistical Concepts and Techniques, Second revised Edition, IAEA, Vienna (1980).Google Scholar
  7. 7.
    J. Jaech, Private Communication (1980).Google Scholar
  8. 8.
    MIL-STD-414, Sampling Procedures and Tables for Inspection by Variables for Percent Defectives, U.S. Government Printing Office, Washington (1957).Google Scholar
  9. 9.
    H. P. Battenberg, Optimale Gegenstrategien bei Datenverfikationstests (Optimal Counter-strageties for Data Verification Tests), Ph.D. dissertation of the Hochschule der Bundeswehr München (1983).Google Scholar
  10. 10.
    J. Bethke, Simulation von Nicht-Entdeckungswarhscheinlichkeiten bei der Kontrolle zweier von drei Lagern durch einen besten Test (Simulation of Probabilities of No Detection for Safeguarding Two of Three Storages by Means of a Best Test), Trimesterarbeit HSBwM-IT 2/83 of the Hochschule der Bundeswehr München (1983).Google Scholar
  11. 11.
    U. Kratzert, Verifikation von Daten zur Entdeckung von Entwendungen aus drei Lagern, von denen zwei beliebige kontrolliert werden (Verification of Data for the Detection of Diversion from Three Storages, Two of Which Are Safeguarded), Diplomarbeit HSBwM-ID 3/83 of the Hochschule der Bundeswehr München (1983).Google Scholar
  12. 12.
    J. Bethke, Analyse von Neyman-Pearson Tests für die Verifikation von Daten auf der Basis von Stichproben vom Umfang 2 (Analysis of Neyman-Pearson Tests for the Verification of Data on the Basis of Random Samples of Size 2), Diplomarbeit HSBwM-ID 11/84 of the Hochschule der Bundeswehr München (1984).Google Scholar
  13. 13.
    R. Avenhaus, Entscheidungstheoretische Analyse von Überwachungsproblemen in kerntechnischen Anlagen (Decision Theoretical Analysis of Safeguards Problems in Nuclear Facilities), Habilitationsschrift, University Mannheim (1974).Google Scholar
  14. 14.
    W. G. Cochran, Errors of Measurement in Statistics, Technometrics 10(4), 637–666 (1968).MATHCrossRefGoogle Scholar
  15. 15.
    R. Avenhaus, Game Theoretic Analysis of Inventory Verification, in Mathematical and Statistical Methods in Nuclear Safeguards, F. Argentesi, R. Avenhaus, M. Franklin, and J. P. Shipley (Eds.), Harwood, London (1983).Google Scholar
  16. 16.
    K. B. Stewart, A Cost-Effectiveness Approach to Inventory Verification, Proceedings of the IAEA Symposium Safeguards Techniques in Karlsruhe, Vol. II, pp. 387–409, IAEA, Vienna (1971).Google Scholar
  17. 17.
    W. G. Cochran, Sampling Techniques, Second Edition, Wiley, New York (1963).Google Scholar
  18. 18.
    H. Vogel, Sattelpunkte von Zwei-Personen-Nullsummen-Spielen zur Beschreibung von Datenverifikationsproblemen bei Inventuren (Saddlepoints of Two-Person Zero-Sum Games for the Description of Data Verification Problems of Inventories), Diplomarbeit HSBwM-ID 12/84 of the Hochschule der Bundeswehr München (1984).Google Scholar
  19. 19.
    S. Karlin, Mathematical Methods and Theory in Games, Programming and Economics, Vol. I, Pergamon, New York (1959).Google Scholar
  20. 20.
    J. B. Sanborn, Attributes Mode Sampling Schemes for International Material Accountancy Verification, Journal of the Institute for Nuclear Materials Management XI, pp. 34–41 (1982).Google Scholar
  21. 21.
    J. L. Jaech, Sample Size Determination for the Variables Tester in the Attribute Mode, Journal of the Institute for Nuclear Materials Management XII, pp. 20–32 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rudolf Avenhaus
    • 1
  1. 1.Federal Armed Forces University MunichNeubibergFederal Republic of Germany

Personalised recommendations