Material Accountancy

  • Rudolf Avenhaus


In this chapter, the basic idea of the establishment of a material balance is presented. For this purpose a material balance area, through which material passes in a given interval of time, is defined. In practice, a material balance area may be a material processing plant, a part of such a plant, or a well-defined part (“box”) of our environment. After the definition of the book inventory—initial physical inventory plus net flow, i.e., receipts minus shipments—the material accountancy principle is formulated; this principle holds that if no material has been lost or diverted, then the book and physical inventories at any given time should be equal. This is simply a consequence of the law of conservation of matter.


False Alarm Material Balance False Alarm Probability Sequential Probability Ratio Test Random Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. B. Stewart, Some Statistical Aspects of B-PID’s and Ending Inventories, AEC and Contractor SS Materials Management Meeting (Germantown, Maryland; May 25–28, 1959), report No. TID-7581, USAEC Division of Technical Information, pp. 148-160 (1959).Google Scholar
  2. 2.
    K. Valentin, Der Vogelhändler, in Alles von Karl Valentin (M. Schulte, ed.), Piper, München (1978).Google Scholar
  3. 3.
    E. L. Lehmann, Testing Statistical Hypotheses, Wiley, New York (1959).zbMATHGoogle Scholar
  4. 4.
    R. Avenhaus, Material Accountability—Theory, Verification, Application, monograph No. 2 of the International Series on Applied Systems Analysis, Wiley, Chichester (1978).Google Scholar
  5. 5.
    H. Scheffée, The Analysis of Variance, Wiley, New York (1967).Google Scholar
  6. 6.
    R. Kraemer and W. Beyrich, in Joint Integral Safeguards Experiment (JEX70) at the Eurochemie Reprocessing Plant Mol, Belgium, Chap. 7, report No. EUR 457 and KfK 1100, EURATOM and the Nuclear Research Center, Karlsruhe (July 1971).Google Scholar
  7. 7.
    W. Beyrich and G. Spannagel, The A7-76 Interlaboratory Experiment IDA-72 on Mass Spectrometric Isotope Dilution Analysis, report No. KFK 2860, EUR 6400c, Nuclear Research Center Karlsruhe (1979).Google Scholar
  8. 8.
    F. Morgan, The Usefulness of Systems Analysis, Proceedings of the IAEA Symposium on Safeguards Techniques in Karlsruhe, Vol. II, pp. 265–290, International Atomic Energy Agency, Vienna (1970).Google Scholar
  9. 9.
    R. Schneider and D. Granquist, Capability of a Typical Material Balance Accounting System for a Chemical Processing Plant, Paper presented at the IAEA Panel on Safeguards Systems Analysis of Nuclear Fuel Cycles in Vienna, August 25–29, 1969.Google Scholar
  10. 10.
    H. Singh, Analysis of Some Available Data on Material Unaccounted for (MUF), report No. KFK 1106, Nuclear Research Center, Karlsruhe (April 1971).Google Scholar
  11. 11.
    R. Horsch, Bestimmung optimaler Gegenstrategien bei speziellen Neyman-Pearson-Tests mit Hilfe von Simulations-und numerischen Verfahren (Determination of Optimal Counterstrategies for Special Neyman-Pearson Tests with Simulation and Numerical Procedures), Diplomarbeit HSBwM-ID 2/82 of the Universität der Bundeswehr München (1982).Google Scholar
  12. 12.
    R. Avenhaus and N. Nakicenovic, Significance Thresholds of One-Sided Tests for Means of Bivariate Normally Distributed Variables, Commun Statistics A8(3), 223–235 (1979).CrossRefGoogle Scholar
  13. 13.
    K. B. Stewart, A New Weighted Average, Technometrics 12, 247–258 (1958).CrossRefGoogle Scholar
  14. 14.
    R. Avenhaus and H. Frick, Game Theoretical Treatment of Material Accountability Problems, research report No. RR-74-2 of the International Institute for Applied Systems Analysis (1974). A slightly modified version has been published under the same title in Int. J. Game Theory 5(2/3), 117–135 (1977).MathSciNetGoogle Scholar
  15. 15.
    G. Heidi and R. Schmidt, Numerische Bestimmung von Gleichgewichtsstrategien in einem sequentiellen Überwachungsspiel (Numerical Determination of Equilibrium Strategies in a Sequential Inspection Game), Trimesterarbeit HSBwM-IT 18/80 of the Universität der Bundeswehr München (1980).Google Scholar
  16. 16.
    R. Avenhaus and J. Jaech, On Subdividing Material Balances in Time and/or Space, J. Inst. Nucl Mater. Manage. 4(3), 24–33 (1981).Google Scholar
  17. 17.
    H.-J. Kowalski, Lineare Algebra, 9th Edition, De Gruyter, Berlin (1979).Google Scholar
  18. 18.
    K. E. Zerrweck, Beste Statistische Entscheidungsverfahren für die sequentielle Materialbilanzierung zum Zwecke der Nuklear-Materialkontrolle—Systemanalytische Aspekte und Grenzen der Kontrolle (Best Statistical Decision Procedures for the Sequential Material Accountancy for Safeguards—Systems Analytical Aspects and Limits), technical Note No., C.C.R. Ispra (1981).Google Scholar
  19. 19.
    J. Jaech, On Forming Linear Combinations of Accounting Data to Detect Constant Small Losses, J. Inst. Nucl. Mater. Manage. 4, 37–44 (1978).Google Scholar
  20. 20.
    H. Frick, Optimal Linear Combinations of Accounting Data for the Detection of Noncon-stant Losses, Nucl. Technol. 44, 429–432 (1979).Google Scholar
  21. 21.
    M. A. Wincek, K. B. Stewart, and G. F. Piepel, Statistical Methods for Evaluating Sequential Material Balance Data, Technical Report NUREG/Cr-0683/PNL-2920 of the U.S. Nuclear Technical Service Commission, National Technical Information Service, Springfield (1979).CrossRefGoogle Scholar
  22. 22.
    R. Avenhaus, Decision Procedures for Material Balance Sequences, Nucl. Sci. Eng. 86, 275–282 (1984).Google Scholar
  23. 23.
    D. H. Pike and G. W. Morrison, Enhancement of Loss Detection Capability Using a Combination of the Kaiman Filter/ Linear Smoother and Controllable Unit Accounting Approach, Proceedings of the 20th Annual Meeting of the Institute for Nuclear Material Management, Albuquerque, New Mexico (1979).Google Scholar
  24. 24.
    D. J. Pike, A. J. Woods, and D. M. Rose, A Critical Appraisal of the Use of Estimates for the Detection of Loss in Nuclear Material Accountancy, Technical Report No. I/80/07 of the University of Reading (1980).Google Scholar
  25. 25.
    D. Sellinschegg, A Statistic Sensitive to Deviations from the Zero-Loss Condition in a Sequence of Material Balances, J. Inst. Nucl Mater. Manage. 8, 48–59 (1982).Google Scholar
  26. 26.
    T. W. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, New York (1958).zbMATHGoogle Scholar
  27. 27.
    M. R. Sampford, Some Inequalities on Mill’s Ratio and Related Functions, Ann. Math. Stat. 24, 130–132 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    T. Laude, Materialbilanzierung mit transformierten nicht nachgewiesenen Mengen (Material accountancy with transformed undetected material quantities), Diplomarbeit HSBwM-ID 18/83 of the Universität der Bundeswehr München (1983).Google Scholar
  29. 29.
    R. Avenhaus and H. Frick, Game Theoretic Treatment of Material Accountability Problems, Part II. Research Report No. RR-74-21 of the International Institute for Applied Systems Analysis (1974).Google Scholar
  30. 30.
    C. S. van Dobben de Bruyn, Cumulative Sum Tests: Theory and Practice, Charles Griffin, London (1968).Google Scholar
  31. 31.
    E. S. Page, Continuous Inspection Schemes, Biometrika 41, 100–115 (1954).MathSciNetzbMATHGoogle Scholar
  32. 32.
    E. S. Page, A Test for a Change in a Parameter Occurring at an Unknown Point, Biometrika 42, 523–527 (1955).MathSciNetzbMATHGoogle Scholar
  33. 33.
    J. Nadler and N. B. Robbins, Some Characteristics of Page’s Two-sided Procedure for Detecting a Change in a Location Parameter, Ann. Math. Stat. 42, 538–551 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    M. Reynolds, Jr., Approximations to the Average Run Length in Cumulative Sum Control Charts, Technometrics 17(1), 65–70 (1975).MathSciNetCrossRefGoogle Scholar
  35. 35.
    D. C. Montgomery and L. A. Johnson, Forecasting and Time Series Analysis, McGraw-Hill, New York (1976).zbMATHGoogle Scholar
  36. 36.
    R. A. Johnson and M. Bagshaw, The Effect of Serial Correlation on the Performance of CUSUM Tests, Technometrics 16(1), 103–112 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    R. A. Johnson and M. Bagshaw, The Effect of Serial Correlation on the Performance of CUSUM Tests II, Technometrics 17(1), 73–78 (1975).MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Setzer, Zur genäherten Bestimmung der mittleren Lauflängen bei CUSUM Tests für abhängige Zufallsvariablen (Approximate determination of the average run lengths of CUSUM tests for dependent random variables), Diplomarbeit HSBwM-ID 10/84 of the Universität der Bundeswehr München (1984).Google Scholar
  39. 39.
    R. Beedgen, Statistical Considerations Concerning Multiple Material Balance Models, Research Report No. LA-9645-MS of the Los Alamos, National Laboratory (1983).Google Scholar
  40. 40.
    H. Robbins and D. Siegmund, Confidence Sequences and Interminable Tests, Bull. ISI 43, 379–387 (1969).MathSciNetzbMATHGoogle Scholar
  41. 41.
    H. Robbins, Statistical Methods Related to the Law of the Iterated Logarithm, Ann. Math. Stat. 41(5), 1397–1409 (1970).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rudolf Avenhaus
    • 1
  1. 1.Federal Armed Forces University MunichNeubibergFederal Republic of Germany

Personalised recommendations