Game Theoretical Analysis

  • Rudolf Avenhaus

Abstract

In this chapter the activities of a safeguards authority are modeled in terms of a noncooperative two-person game with the authority as the first and the operator as the second player. Both for sequential and for nonsequential safeguards procedures it is shown that the general game can be analyzed by means of two auxiliary games. In the nonsequential case the first auxiliary game no longer contains the payoff parameters of the two players, and thus, dealing only with random sampling and measurement error problems, provides solutions which are suited for practical applications. In the sequential case the situation is more complicated: Only under rather restrictive assumptions does one again get the independence of the payoff parameter values.

Keywords

False Alarm Equilibrium Point False Alarm Probability Original Game Game Theoretical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Maschler, A Price Leadership Method for Solving the Inspector’s Non-Constant-Sum Game, Nav. Res. Logistics Q. 13, 11–33 (1966).MATHCrossRefGoogle Scholar
  2. 2.
    M. Maschler, The Inspector’s Non-Constant-Sum Game: Its Dependence on a System of Detectors, Nav. Res. Logistics Q. 14, 275–290 (1967).MATHCrossRefGoogle Scholar
  3. 3.
    A. J. Goldman and M. H. Pearl, The Dependence of Inspection-System Performance on Levels of Penalties and Inspection Resources, J. Res. Nat. Bur. Stand. 80B(2), 189–235 (1976).MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Bierlein, Direkte Inspektionssysteme (Direct Inspection Systems), Oper. Res. Verfahren (FRG) 6, 57–68 (1968).Google Scholar
  5. 5.
    H. Frick and R. Avenhaus, Analyse von Fehlalarmen in Überwachungssystemen mit Hilfe von Zwei-Personen Nichtnullsummen-Spielen (Analysis of False Alarms in Safeguards Systems by Means of Two-Person Non-Zero-Sum Games), Oper. Res. Verfahren (FRG) 26, 629–639 (1977).MathSciNetGoogle Scholar
  6. 6.
    H. Burger, Einführung in die Theorie der Spiele (Introduction to Game Theory), Walter de Gruyter, Berlin, 2nd Ed. (1966).MATHGoogle Scholar
  7. 7.
    E. L. Lehmann, Testing Statistical Hypotheses, Wiley, New York (1959).MATHGoogle Scholar
  8. 8.
    J. Fichtner, Statistische Tests zur Abschreckung von Fehlverhalten—eine mathematische Untersuchung von Überwachungssystemen mit Anwendungen (Statistical Tests for Deterring Illegal Behavior—a Mathematical Investigation of Safeguards Systems with Applications). Doctoral dissertation, Universität der Bundeswehr München (1985).Google Scholar
  9. 9.
    M. Dresher, A Sampling Inspection Problem in Arms Control Agreements: A Game Theoretic Analysis, memorandum No. RM-2972-ARPA, The Rand Corporation, Santa Monica, California (1962).Google Scholar
  10. 10.
    E. Höpfinger, Zuverlässige Inspektionsstrategien (Reliable Inspection Strategies), Z. Wahrscheinlichkeitstheorie Verw. Geb. (FRG) 31, 35–46 (1974).MATHCrossRefGoogle Scholar
  11. 11.
    E. Höpfinger, Reliable Inspection Strategies, Vol. 17 of the Mathematical Systems in Economics Series, Verlag Anton Hain, Meisenheim am Glan, FRG (1975).Google Scholar
  12. 12.
    V. Abel and R. Avenhaus, Sequentiell-Spieltheoretische Analyse von auf dem Materialbilanzierungsprinzip beruhenden Überwachungssystemen (Sequential Game Theoretical Analysis of Safeguards Systems based on the Material Accountancy Principle), Angew. Systemanal. (FRG) 2 (1), 2–9 (1981).Google Scholar
  13. 13.
    V. Abel and R. Avenhaus, Sequentiell-Spieltheoretische Analyse von auf dem Materialbilanzierungsprinzip beruhenden Überwachungssystemen, Teil II und III (Sequential Game Theoretical Analysis of Safeguards Systems based on the Material Accountancy Principle, Parts II and III), Angew. Systemanal. (FRG) 3(2), 72–78 (1982).Google Scholar
  14. 14.
    J. Gladitz and K. Willuhn, Attribute Sampling Plans for Nuclear Material Control Allowing for Additional Information—The Bayes Approach, Proceedings of the Symposium Nuclear Safeguards Technology 1982, Vol. II, pp. 331–348, International Atomic Energy Agency, Vienna (1983).Google Scholar
  15. 15.
    H. J. Vogel, Einsatz der Beta-Binomial-Verteilung bei Überwachungsproblemen (Use of the Beta-Binominal Distribution for Safeguards Problems), Trimesterarbeit IT 7/83 of the Universität der Bundeswehr München (1983).Google Scholar
  16. 16.
    N. L. Johnson and S. Kotz, Distributions in Statistic—Discrete Distributions, Wiley, New York (1969).Google Scholar
  17. 17.
    W. Feller, An Introduction to Probability Theory and its Applications, 3rd Edition, Vol. I, Wiley, New York (1968).MATHGoogle Scholar
  18. 18.
    W. E. Siri, H. Ruderman, and M. Dresher, The Application of Game Theory to Nuclear Material Accounting, USNRC report No. NUREG/CR-C490 Washington, D.C. (1978).Google Scholar
  19. 19.
    M. Dresher and S. Moglewer, Statistical Acceptance Sampling in a Competitive Environment, Oper. Res. 28(3), Pt I, 503–511 (1980).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    C. A. Bennett, A. J. Goldman, W. A. Higinbotham, J. L. Jaech, W. F. Lucas, and R. F. Lumb, A Review of the Application of Strategic Analysis to Material Accounting, USNRC report No. NUREG/CR-0950 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rudolf Avenhaus
    • 1
  1. 1.Federal Armed Forces University MunichNeubibergFederal Republic of Germany

Personalised recommendations