A Second bibliography on semi-Markov processes

  • Jozef L. Teugels


Markov Process Markov Decision Process Maintenance Policy Renewal Theory Redundant System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, S. (1977). The asymptotic exponential failure law for redundant repairable systems, II. Rep.Statist.Appl.Res.Un.Japan.Sci. Engin., 24, 15–39.Google Scholar
  2. Affisoo, J. & A. Ghosal (1978). Approximation of waiting time in tandem queues through isomorphs-1. SCIMA, J.Manag.Sci.Appl.Cybern., 7, 55–68.zbMATHGoogle Scholar
  3. Agarwal, M. & A. Kumar (1980). A review of standby redundant systems. IEEE Trans.Reliab. R-29, 290–294.CrossRefGoogle Scholar
  4. Agarwal, M. & A. Kumar (1980). Steady-state analysis of a 2-unit standby system with inefficient and intermittent repair. IAPQR Trans., 5, 85–99.Google Scholar
  5. Agarwal, M., R. Debabrata & A. Kumar (1978). Probability analysis of a two-unit standby redundant system with repair efficiency and imperfect switch-over. Intern.J.Systems Sci., 9, 731–742.zbMATHCrossRefGoogle Scholar
  6. Agarwal, M., A. Kumar & S.M. Sinha (1977 and 1981). Analysis of a two-unit priority standby system with different operative states. J. Math.Sci., Delhi, 65-79 and 12-13.Google Scholar
  7. Agnew, C.E. (1976). Dynamic modelling and control of congestion-prone systems. Operations Res., 24, 400–419.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Agrafiotis, G.K. (1980). Modelling manpower systems. Ind.Math., 30, 103–120.MathSciNetzbMATHGoogle Scholar
  9. Agrafiotis, G.K. (1982). On the stochastic theory of compartments: a semi-Markov approach for the analysis of the k-compartmental systems. Bull.Math.Biol., 44, 809–817.MathSciNetzbMATHGoogle Scholar
  10. Agrafiotis, G.K. (1983). General distribution function for periods of downtime of a single system exceeding a limiting downtime. J.Oper.Res.Soc, 34, 1115–1118.zbMATHGoogle Scholar
  11. Agrawala, A.K. & R.L. Larsen (1983). Control of a heterogeneous two-server exponential queueing system. IEEE Trans.Software Eng., SE-9, 522–526.CrossRefGoogle Scholar
  12. Ahmedova, H.M. & T.I. Nasirova (1975). Non-stationary distribution of an inventory for a model with inventory control. Izvestija Akad.Nauk Azerbaidz.SSR, Ser.fiz.-tehn.mat.Nauk, 19-22 (Russian).Google Scholar
  13. Akif, E.M., T. Chien & Y. Ho (1979). A gradient technique for general buffer storage design in a production line. Proc.1978 IEEE Conf. Decision & Control, San Diego, 625-632.Google Scholar
  14. Akritas, M.G. & G.G. Roussas (1980). Asymptotic inference in continuous time semi-Markov processes. Scan.J.Stat., 7, 73–97.MathSciNetzbMATHGoogle Scholar
  15. Aksenov, B.E., A.M. Aleksandrov & A.N. Bakanov (1973). Application of generalized Poisson flow for the study of methods to increase the reliability. Probl.Peredaci Inform., 9, 80–86 (Russian).MathSciNetzbMATHGoogle Scholar
  16. Akyildiz, I.F. & G. Bolch (1982). Analyse von Rechensystemen. Analytische Methoden zur Leistungsbewertung und Leistungsvorhersage. Leitfaden der Angewandten Mathematik und Mechanik, Band 57, Teubner.Google Scholar
  17. Alam, M. & R. Billiton (1978). Effect of restricted repair on system reliability indices. IEEE Trans.Reliab., R-27, 376–379.CrossRefGoogle Scholar
  18. Aleksandrov, A.M. (see Aksenov, B.E.).Google Scholar
  19. Ali Khan, M.S. (1977). Infinite dams with discrete additive inputs. J.Appl.Probab., 14, 170–180.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Alj A. & A. Haurie (1979). Description and control of a continuous time population process. Proc.1978 IEEE Conf.Decision & Control, San Diego, 557-565.Google Scholar
  21. Alj, A. & A. Haurie (1980). Description and control of a continuous-time population process. IEEE Trans.Autom.Control AC-25, 3–10.MathSciNetCrossRefGoogle Scholar
  22. Alj, A. & A. Haurie (1981). Hierarchical control of a population process with application to group preventive maintenance. Large scale systems, theory and applications, Proc.IFAC Symp. Toulouse, 1980, 333–338.Google Scholar
  23. Allan, R.N., M.R.G. Al-Shakarchi & C.H. Grigg (1976). Numerical techniques in probabilistic load flow problems. Int.J.Numer. Methods Engin., 10, 853–860.zbMATHCrossRefGoogle Scholar
  24. Al-Shakarchi, M.R.G. (see Allan R.N.).Google Scholar
  25. Aluffi, F., S. Incerti & F. Zirilli (1980). An application of the diffusion approximation to queueing networks: a moving head disks model. Ottimizzazione non lineare e applicazioni, Atti’Aquila, 213-222.Google Scholar
  26. Anders, B. & G. Lucas (1981). Optimierungmodelle zur Regelung forstlichrer Prozesse unter Beachtung von Ubergangswahrscheinlichkeiten. Wiss.Z.Tech.Univ.Dres., 30, 91–95.MathSciNetzbMATHGoogle Scholar
  27. Andersen, P.K. (1981). A note on filtered Markov renewal processes. J.Appl.Probab., 18, 752–756.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Anderson, M.Q. (1981). Monotone optimal preventive maintenance policies for stochastically failing equipment. Nav.Res.Logist. Q., 28, 347–358.zbMATHCrossRefGoogle Scholar
  29. Andronov, A.M. (1980). Algorithm for finding optimal strategies in controlled semi-Markov birth-and-death processes. Eng.Cybern., 18, 67–71.MathSciNetzbMATHGoogle Scholar
  30. Anichkin, S.A. (1982). Coupling of renewal processes and its applications. Stability problems of stochastic models, Proc.Semin. Moskva, 4-24.Google Scholar
  31. Anichkin, S.A. (1983). Hyper-Erlang approximation of probability distributions on (0,∞) and its application. Stability problems of stochastic models, Proc.Semin.Moskva, 1-16.Google Scholar
  32. Anisimov, V.V. (1973). On stopping a stochastic process at the time a certain level is reached. Soviet Math.Doklady, 14, 1500–1503.zbMATHGoogle Scholar
  33. Anisimov, V.V. (1978). Description of multidimensional limit laws for finite Markov chains in a series scheme: the general case. Theory Probab.Math.Stat., 11, 1–7.zbMATHGoogle Scholar
  34. Anisimov, V.V. (1977). Switched processes. Kibernetika, Kiev, 111-115.Google Scholar
  35. Anisimov, V.V. (1979). Applications of limit theorems for switching processes. Cybernetics, 14, 917–929.CrossRefGoogle Scholar
  36. Anisimov, V.V. (1981). Limit theorems for processes admitting the asymptotic consolidation of one component. Theory Probab.Math. Stat., 22, 1–13.zbMATHGoogle Scholar
  37. Anisimov, V.V. (1981). Asymptotic enlargement of inhomogeneous Markov and semi-Markov systems with an arbitrary state space. Dokl. Akad.Nauk Ukr.SSR, Ser.A, 3-6 (Russian).Google Scholar
  38. Anisimov, V.V. & A.I. Chernyak (1983). Limit theorems for certain rare functionals on Markov chains and semi-Markov processes. Theory Probab.Math.Stat., 26, 1–6.zbMATHGoogle Scholar
  39. Anisomov, V.V., V.I. Sereda & A.A.Vojna (1981). Choice of the optimal checking moments for a semi-Markov system with failures. Dokl. Akad.Nauk Ukr.SSR, Ser.A, 79-82 (Russian).Google Scholar
  40. Anisimov, V.V. & V.N. Sityuk (1982). Asymptotic analysis of the heterogeneous Markov systems with rare semi-Markov failures. Dokl. Akad.Nauk Ukr.SSR, Ser.A, 66-69 (Russian).Google Scholar
  41. Ansell, J., A. Bendell & S. Humble (1980). Nested renewal processes. Adv.Appl.Probab., 12, 880–892.MathSciNetzbMATHCrossRefGoogle Scholar
  42. Aranda, G.J. (1982). Some relations between Markovian models of networks of queues. Trab.Estad.Invest.Oper. 33, 3–29 (Spanish).zbMATHGoogle Scholar
  43. Aripov, H.M. (1974). On a generalization of the Erlang problem for an arbitrary distribution of the service time. Izvestija Akad. Nauk UzSSR, fiz.-mat.Nauk, 18, 8–12 (Russian).MathSciNetzbMATHGoogle Scholar
  44. Arjas, E. & V.S. Korolyuk (1980). Stationary phase extension of Markov renewal processes. Dopov.Akad.Nauk Ukr.SSR, Ser.A, 3-6 (Ukrainian).Google Scholar
  45. Arjas, E. & E. Nummelin (1977). Semi-Markov processes and σ-invariant distributions. Stochastic Processes Appl., 6, 53–64.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Arjas, E., E. Nummelin & R.L. Tweedie (1978). Uniform limit theorems for non-singular renewal and Markov renewal processes. J.Appl. Prob., 15, 112–125.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Arjas, E., E. Nummelin & R.L. Tweedie (1980). Semi-Markov processes on a general state space: alpha-theory and quasi-stationarity. J.Aust.Math.Soc., Ser.A, 30, 187–200.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Arndt, U. & P. Franken (1979). Construction of a class of stationary processes with applications in reliability. Zastosow.Mat., 16, 379–392.MathSciNetzbMATHGoogle Scholar
  49. Arndt, U. & P. Franken (1979). Continuity of generalized regenerative processes. Eng.Cybern., 17, 69–72.zbMATHGoogle Scholar
  50. Arndt, U., P. Franken, D. Koenig & V. Schmidt (1982). Queues and point processes. John Wiley & Sons.Google Scholar
  51. Arora, J.R. (1977). Reliability of several standby-priority-redundant systems. IEEE Trans.Reliab. R-26, 290–293.CrossRefGoogle Scholar
  52. Arsenisvili, G.L. & I.I. Ezov (1978). A certain limit theorem for semi-Markov processes of order r. Select.Translat.Math. Statist.Probab., 14, 135–138.Google Scholar
  53. Artamonov, G.T. (1976). Produktivität einer diskreten bearbeitenden Zweigerat-Taktstrase unter den Verhaltnissen von Versagern. Kibernetika, Kiev, 126–130 (Russian).Google Scholar
  54. Athreya, K.B. & P.E. Ney (1978). Limit theorems for semi-Markov processes. Bull.Austral.Math.Soc., 19, 283–294.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Athreya, K.B. & K. Ramamurthy (1980). Renewal theory — A Markov process approach. J.Math.Kyoto Univ., 20, 169–177.MathSciNetzbMATHGoogle Scholar
  56. Athreya, K.B., D. McDonald & P.E. Ney (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Probability, 6, 788–797.MathSciNetzbMATHCrossRefGoogle Scholar
  57. Avenhaus, R. & W. Haussmann (1983). Ein Markov’sches Modell für ein serielles Produktionsystem mit einen Zwischenlager. Methods Oper.Res., 46, 547–560.zbMATHGoogle Scholar
  58. Azlarov T.A. ed. (1969). Mathematical methods in material and quality control. Akad.Nauk Uzb.SSR.Inst.Mat.Romanovskogo. Tashkent.Google Scholar
  59. Babadzhanyan, A.A. (1979). A certain extension of Markov processes as basis for solution and algorithm for an optimal strategy. Dokl.Akad.Nauk Arm.SSR, 69, 213–216 (Russian).MathSciNetzbMATHGoogle Scholar
  60. Baccelli, F. (1981). Analysis of a service facility with periodic checkpointing. Acta Inf., 15, 67–81.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Bajaj, D. & A. Kuczura (1977). A method of moment for the analysis of a switched communication network’s performance. IEEE Trans. Commun.COM-25, 185-193.Google Scholar
  62. Bakanov, A.N. (see Aksenov, B.E.).Google Scholar
  63. Balagopal, K. (1979). Some limit theorems for the general semi-Markov storage model. J.Appl.Probab., 16, 607–617.MathSciNetzbMATHCrossRefGoogle Scholar
  64. Balbo, G., S.C. Bruell & H.D. Schwetman (1977). Customer classes and closed network models — a solution technique. Inf.Process. 77, Proc.IFIP Congr.Toronto 1977, 559–564.Google Scholar
  65. Balcer, Y. & I. Sahin (1983). A stochastic theory of pension dynamics. Insur.Math.Econ., 2, 179–197.MathSciNetzbMATHCrossRefGoogle Scholar
  66. Baltrunas, A. (1982). Regularity of semi-Markov processes. Lith. Math.J., 21, 111–116.zbMATHCrossRefGoogle Scholar
  67. Banach, D. & D.S. Silvestrov (1981). Uniform ergodic theorems on the average for accumulation processes. Dopov.Akad.Nauk Ukr.SSR, Ser.A, 34-37.Google Scholar
  68. Bandura, V.N. & I.I. Ezov (1974). On the distribution of first-passage time of a given level for a class of processes with step-function trajectories I, II. Theor.Probab.Math.Statist., 1, 5–18 & 19-34.Google Scholar
  69. Banerjee, A.K. & G.K. Bhattacharyya (1976). Testing hypotheses in a two-state semi-Markov process. Sankhya, Ser.A, 38, 340–356.MathSciNetzbMATHGoogle Scholar
  70. Baras, J.S., W.S. Levine & T.L. Lin (1979). Discrete time point processes in urban traffic queue estimation. Proc.IEEE Conf. Decision & Control, San Diego, 1025-1031.Google Scholar
  71. Barbour, A.D. (1982). Generalized semi-Markov schemes and open queueing networks. J.Appl.Probab., 19, 469–474.MathSciNetzbMATHCrossRefGoogle Scholar
  72. Barbour, A.D. & R. Schassberger (1981). Insensitive average residence times in generalized semi-Markov processes. Adv.Appl.Probab., 13, 720–735.MathSciNetzbMATHCrossRefGoogle Scholar
  73. Barfoot, C.B. (1983). Some mathematical methods for modelling the performance of a distributed data base system. Adequate modelling of systems, Proc.Int.Conf.Bad Honnef, 172-182.Google Scholar
  74. Barlow, R.E. & F. Proschan (1976). Theory of maintained systems: Distribution of time to first system failure. Math.Oper.Res., 1, 32–42.MathSciNetzbMATHCrossRefGoogle Scholar
  75. Basawa, I.V. (1974). Maximum likelihood estimation of parameters in renewal and Markov-renewal processes. Austral.J.Statist., 16, 33–43.MathSciNetzbMATHCrossRefGoogle Scholar
  76. Barzily, Z. & M. Rubinovitch (1979). On platoon formation on two-lane roads. J.Appl.Probab., 16, 347–361.MathSciNetzbMATHCrossRefGoogle Scholar
  77. Basharin, G.P., V.A. Kokotushkin & V.A. Naumov (1979). The method of equivalent substitutions for calculating fragments of communication networks for a digital computer. I. Eng.Cybern., 17, 66–79.zbMATHGoogle Scholar
  78. Bather, J.A. (1976). A control chart model and a generalized stopping problem for brownian motion. Math.Oper.Res., 1, 209–224.MathSciNetzbMATHCrossRefGoogle Scholar
  79. Baxter, L.A., D.J. McConalogue & E.M. Scheuer (1982). On the tabulation of the renewal function. Technometrics, 24, 151–156.zbMATHCrossRefGoogle Scholar
  80. Becker, M. & A.M. Kshirsagar (1981). Superposition of Markov renewal processes. S.Afr.Stat.J., 15, 13–30.MathSciNetzbMATHGoogle Scholar
  81. Becker, A. & A.H. Marcus (1977). Power laws in compartmental analysis. II. Numerical evaluation of semi-Markov models. Math.Biosciences, 35, 27–45.zbMATHCrossRefGoogle Scholar
  82. Beichelt, F. (1976). Prophylaktische Erneuerung von Systemen. Einfuehrung in mathematische Grundlagen. Wissenschaftliche Taschen-buecher. Reihe Math.-Physik, 153, Akademie-Verlag, Berlin.Google Scholar
  83. Berbee, H.C.P. (1979). Random walks with stationary increments and renewal theory. Mathematical Centre Tracts, 112.Google Scholar
  84. Berg, M. (1976). A proof of optimality for age replacement policies. J.Appl.Probab., 13, 751–759.zbMATHCrossRefGoogle Scholar
  85. Berg, M. (1976). Optimal replacement policies for two-unit machines with increasing running costs, I. Stochastic Processes Appl., 4, 89–106.MathSciNetzbMATHCrossRefGoogle Scholar
  86. Berg, M. (1981). A stochastic model for the reliability of a power unit with deliberate shutdowns. Eur.J.Oper.Res., 6, 309–314.zbMATHCrossRefGoogle Scholar
  87. Berman, M. (1978). Regenerative multivariate point processes. Adv. Appl.Probab., 10, 411–430.zbMATHCrossRefGoogle Scholar
  88. Bertsekas, D.P. (1982). Dynamic behavior of shortest path routing algorithms for communication networks. IEEE Trans.Autom.Control AC-27, 60-74.Google Scholar
  89. Bestwick, P.F. & D. Sadjadi (1979). A stagewise action elimination algorithm for the discounted semi-Markov problem. J.Oper.Res. Soc, 30, 633–637.MathSciNetzbMATHGoogle Scholar
  90. Beutler, F.J. & B. Melamed (1978). Decomposition and customer streams of feedback networks of queues in equilibrium. Oper.Res., 26, 1059–1072.MathSciNetzbMATHCrossRefGoogle Scholar
  91. Beutler, F.J. & B. Melamed (1982). Multivariate Poisson flows on Markov step processes. J.Appl.Probab., 19, 289–300.MathSciNetzbMATHCrossRefGoogle Scholar
  92. Beyer, W.A. & C. Delisi (1977). The asymptotic form of partition functions of linear chain molecules: an application of renewal theory. J.Math.Analysis Appl., 57, 416–428.MathSciNetzbMATHCrossRefGoogle Scholar
  93. Bhalaik, H.S. & N.S. Kambo (1979). Non-homogeneous M/M/s queues in series. INFOR, Can.J.Oper.Res.Inf.Process., 17, 262–275.MathSciNetzbMATHGoogle Scholar
  94. Bhaskar, D. & S.K. Srinivasan (1979). Probabilistic analysis of intermittently used systems. J.Math.Phys.Sci., Madras, 13, 91–105.zbMATHGoogle Scholar
  95. Bhat, U.N. & R.E. Nance (1979). An evaluation of CPU efficiency under Bhattacharyya, G.K. (see A.K.Benerjee). dynamic quantum allocation. J.Assoc.Comput.Mach., 26, 761–778.MathSciNetzbMATHCrossRefGoogle Scholar
  96. Bieber, G. (1979). On optimal control of Markov processes with application to a class of service systems. Math.Operationsforsch.Stat., Ser.Optimization, 10, 143–162.MathSciNetzbMATHCrossRefGoogle Scholar
  97. Billinton, R. (see M.Alam).Google Scholar
  98. Birolini, A. (1977). Hardware simulation of semi-Markov and related processes. I. A versatile generator: II. Simulation of noise pulses on data channels and other applications. Math.Comput. Simulation, 19, 75–97 & 183-191.MathSciNetzbMATHCrossRefGoogle Scholar
  99. Biswas, S., P.K. Kapur & Y.K. Mehta (1983). Generalized availability measures for repairable systems. IAPQR Trans., 8, 83–94.zbMATHGoogle Scholar
  100. Blischke, W.R. (see L.A.Baxter).Google Scholar
  101. Blischke, W.R. & R.M. Scheuer (1981). Applications of renewal theory in analysis of the free-replacement warranty. Nav.Res.Logist.Q., 28, 193–205.MathSciNetzbMATHCrossRefGoogle Scholar
  102. Bobbio, A. & A. Premoli (1983). Analysis of non-regenerative repair processes through homogeneous Markov models. Int.J.Syst.Sci., 14, 647–659.MathSciNetzbMATHCrossRefGoogle Scholar
  103. Bobos, A.G. & E.N. Protonotarios (1978). Optimal systems for equipment maintenance and replacement under Markovian deterioration. Eur. J.Oper.Res., 2, 257–264.MathSciNetzbMATHCrossRefGoogle Scholar
  104. Bodnariu, M.A. (1982). Compact Markov processes with rewards. Stud. Cercet.Mat., 34, 211–222 (Roumanian).MathSciNetzbMATHGoogle Scholar
  105. Boel, R. (1981). Martingale methods for the semi-Markov analysis of queues with blocking. Stochastics, 5, 115–133.MathSciNetzbMATHCrossRefGoogle Scholar
  106. Boel, R. (1981). Stochastic models of computer networks. Proc.NATO ASI: Stochastic Systems, Les Arcs, 1980, 141–167.MathSciNetGoogle Scholar
  107. Bogdantsev, E.N. & S.M. Brodi (1982). Limit theorem for a class of imbedded semi-Markov processes. Cybernetics, 17, 667–693.Google Scholar
  108. Bokucava, I.V. (1976). On estimates of the spectral characteristics of sequences of intervals between the events of a stationary semi-Markovian process. Soobscenija Akad.Nauk Gruzin.SSR 84, 17–20 (Russian).MathSciNetGoogle Scholar
  109. Bolch, G. (see I.F. Akyildiz).Google Scholar
  110. Boling, R. & F.S. Hillier (1977). Toward characterizing the optimal allocation of work in production line systems with variable operation times. Adv.Oper.Res.Proc.2nd Eur.Congres., Stockholm 1976, 649–658.Google Scholar
  111. Bondarev, V.V. & V.I.Nosenko (1976). Questions of the stability and the dissipation for stochastic differential equations with a semi-Markov interference of the randomness. Behaviour of systems in random media, Work Collect., Kiev, 8-15 (Russian).Google Scholar
  112. Borovkov, K.A. (1980). Stability theorems and estimates of the rate of convergence of the components of factorizations for walks defined on Markov chains. Theory Probab.Appl., 25, 325–334.zbMATHCrossRefGoogle Scholar
  113. Borozdin, O.P. & I.I. Ezov (1979). On a class of boundary functionals for strongly regenerative random processes. Theory Probab.Math. Statist., 18, 9–19.zbMATHGoogle Scholar
  114. Bosch, K. (1975). Erneuerungsprozesse mit Erneuerungen zu verschiedenen Kosten. Angew.Informatik, 17, 143–150.Google Scholar
  115. Bosch, K. (1981). Wartungs-und Inspektionenstrategien. Operations Res., Proc. 1980, DGOR, Essen, 229-240.Google Scholar
  116. Bosch, K. & U. Jensen (1978). Deterministische Inspektionenstrategien. Z.Operat.Res., Ser.A, 22, 151–168.MathSciNetzbMATHGoogle Scholar
  117. Boyse, J.W. (1974). Determining near-optimal policies for Markov renewal decision processes. IEEE Trans.Systems Man Cybernetics SMC-4, 215-217.Google Scholar
  118. Brandwayn, A. (1976). Control schemes in queueing networks. Management Sci., 22, 810–822.CrossRefGoogle Scholar
  119. Breuer, M.A. & A.D. Friedman (1977). Diagnosis and reliable design of digital systems. Digital System Design Series. Pitman, London.Google Scholar
  120. Brodeckii, G.L. (1978). On a problem of periodic storing of results. Kibernetica, Kiev, 70-74 (Russian).Google Scholar
  121. Brodeckii, G.L. (1980). On the question of optimal organization of recording intermediate information in the case of random failures of a system. Eng.Cybern., 18, 61–65.Google Scholar
  122. Brodi, S.M. (see E.N. Bogdantsev).Google Scholar
  123. Brodi, S.M., V.S. Korolyuk & A.F. Turbin (1976). Semi-Markov processes and their applications. J.Soviet Math., 4, 244–280.zbMATHGoogle Scholar
  124. Brown, C.B. & E.C.C. Chang (1973). Functional reliability of structures. J.Franklin Inst., 296, 161–178.zbMATHCrossRefGoogle Scholar
  125. Brown, C.C., M.H. Gail & T.J. Santner (1980). An analysis of comparative carcinogenesis experiments based on multiple times to tumor. Biometrics, 36, 255–266.MathSciNetzbMATHCrossRefGoogle Scholar
  126. Brown, T.C. & P.K. Pollett (1982). Some distributional approximations in Markovian queueing networks. Adv.Appl.Probab., 14, 654–671.MathSciNetzbMATHCrossRefGoogle Scholar
  127. Bruell, S.C. (see G.Balbo).Google Scholar
  128. Buehler, G. (1976). Informationsbedarf bei Produktions-Lagerhaltungs-Modellen. Proc.Oper.Res., 6, DGOR, 380-389.Google Scholar
  129. Buehler, G. (1979). Sicherheitsaequivalente und Informationsbedarf bei stochastischen dynamischen Produktions-Lagerhaltungs-Modellen. Haag und Herchen Verlag, Frankfurt/Main.zbMATHGoogle Scholar
  130. Burgin, T.A. & J.M. Norman (1976). A table for determining the probability of a stock out and potential lost sales for a gamma distributed demand. Operat.Res.Quart., 27, 621–631.MathSciNetzbMATHCrossRefGoogle Scholar
  131. Burman, D. (1976). Estimation of transition probabilities in a multiparticle semi-Markov system. J.Appl.Probab., 13, 696–706.MathSciNetzbMATHCrossRefGoogle Scholar
  132. Burman, D. (1981). Insensitivity in queueing systems. Adv.Appl. Probab., 13, 846–859.MathSciNetzbMATHCrossRefGoogle Scholar
  133. Butko, T.K. (1982). Markov renewal process of the system M/G/1/∞. Applied problems of probability theory, Collect.Sci.Works, Kiev, 14-19 (Russian).Google Scholar
  134. Calvert, T.W. & A.C. Sanderson (1976). Distribution coding in neural interaction models. Math.Biosciences, 29, 1–25.zbMATHCrossRefGoogle Scholar
  135. Cao, J. & K. Cheng (1982). Analysis of M/G/1 queueing system with repairable service station. Acta Math.Appl.Sin., 5, 113–127 (Chinese).MathSciNetzbMATHGoogle Scholar
  136. Carravetta, M. & R. de Dominicis (1981). Some applications of semi-Markov processes in reliability and modelling. RAIRO, Autom. Syst.Anal.Control, 15, 361–375.zbMATHGoogle Scholar
  137. Carravetta, M. R. de Dominicis & M.R. D’Esposito (1981). Semi-Markov processes in modelling and reliability: a new approach. Appl.Math.Modelling, 5, 269–274.MathSciNetzbMATHCrossRefGoogle Scholar
  138. Carravetta, M. R. de Dominicis & R. Manca (1981). Semi-Markovian stochastic processes in social security problems. Cah.Cent. Etud.Rech.Oper., 23, 333–339.Google Scholar
  139. Carroll, J.L., A. van de Liefvoort & L. Lipsky (1982). Solutions of M/G/1//N-type loops with extensions to M/G/l and GI/M/1 queues. Oper.Res., 30, 490–514.MathSciNetzbMATHCrossRefGoogle Scholar
  140. Case, J. (1979). A model to predict the quality of taxi service at a large municipal airport when the drivers compete. Lecture Notes Pure Appl.Math., 47, 187–203.Google Scholar
  141. Chakravarthy, S. & M.F. Neuts (1981). A single server queue with platooned arrivals and phase type services, Eur.J.Oper.Res., 8, 379–389.MathSciNetzbMATHCrossRefGoogle Scholar
  142. Chattergy, R. & U.W. Pooch (1978). Analysis of the availability of computer systems using computer-aided algebra. Commun.ACM 21, 586–591.MathSciNetzbMATHCrossRefGoogle Scholar
  143. Chatterjee, A., N.D. Georganas & P.K. Verma (1980). Local congestion control in computer-communication networks with random routing. INFOR, Can.J.Oper.Res.Inf.Process., 18, 74–79.zbMATHGoogle Scholar
  144. Chauny, F., M. Chokron & A. Haurie (1984). Nursing care demand prediction based on a decomposed semi-Markov population model. Oper. Res.Lett., 2, 279–284.zbMATHCrossRefGoogle Scholar
  145. Chebotarev, A.S. & S.E. Shibanov (1975). Probabilistic problem in the control of multiple allocations with common resources. Izvestija Akad.Nauk SSSR, tehn.Kibernet. 44-47 (Russian).Google Scholar
  146. Cheng, K. & J. Cao (1981). Reliability analysis of a general repairable system: Markov renewal model. Acta Math.Appl.Sin., 4, 295–306.MathSciNetzbMATHGoogle Scholar
  147. Cherenkov, A.P. (1974). Existence theorems for a semi-Markov process with an arbitrary set of states. Math.Notes, 15, 367–373.zbMATHCrossRefGoogle Scholar
  148. Cherenkov, A.P. (1977). Asymptote of additive functionals of semi-Markov processes with arbitrary set of states. Math.Notes, 21, 119–124.zbMATHCrossRefGoogle Scholar
  149. Cherenkov, A.P. (1977). Attainability property and ergodicity theorems for a semi-Markov process with an arbitrary set of states. Math.Notes, 21, 167–173.zbMATHCrossRefGoogle Scholar
  150. Cherenkov, A.P. (1980). Some ergodic theorems for a semi-Markov process with an arbitrary set of states. Theory Probab.Math. Statist., 19, 169–180.zbMATHGoogle Scholar
  151. Cherenkov, A.P. (1982). The law of large numbers for additive functionals of semi-Markov processes. Applied problems of probability theory. Collect.Sci.Works, Kiev, 134-141 (Russian).Google Scholar
  152. Cherkesov, G.N. (1980). Semi-Markovian models of reliability of multichannel systems with unreplenishable reserve of time. Eng.Cybern., 18, 65–78.zbMATHGoogle Scholar
  153. Chernaya, M.F. (1979). A busy period analysis for a system with semi-Markov service. Analytical methods in probability theory, Collect.Sci.Works, Kiev, 98-102 (Russian).Google Scholar
  154. Chernomorov, G.A. & V.G. Zhukovskij (1979). An analytic model of a closed service system with source by means of an enlargment of a semi-Markov process. Izv.Sev.-Kavk.naucn.Cent.vyss.Sk., teh. Nauki, 33-38 (Russian).Google Scholar
  155. Chernyak, A.I. (see V.V.Anisimov).Google Scholar
  156. Cherry, W.P. & R.L. Disney (1983). The superposition of two independent Markov renewal processes. Zastosow.Mat., 17, 567–602.MathSciNetzbMATHGoogle Scholar
  157. Chien, T. (see E.M. Akif).Google Scholar
  158. Chikte, S.D. & S.D. Deshmukh (1976). Dynamic pricing with stochastic entry. Review Economic Studies, 43, 91–97.zbMATHCrossRefGoogle Scholar
  159. Chokron, M. (see F.Chauny).Google Scholar
  160. Choo, Q.H. & B. Conolly (1979). New results in the theory of repeated orders queueing systems. J.Appl.Probab., 16, 631–640.MathSciNetzbMATHCrossRefGoogle Scholar
  161. Christer, A.H. (1979). Refined asymptotic costs for renewal reward processes. J.Oper.Res.Soc., 29, 577–583.Google Scholar
  162. Chu, W.W. & H. Opderbeck (1976). Analysis of the PFF replacement algorithm via a semi-Markov model. Commun.ACM, 19, 298–304.MathSciNetzbMATHCrossRefGoogle Scholar
  163. Chumakov, L.D. (1975). Interplay between reliability and maintenance costs of a technical system with periodic repair control. Nadezn.Dolgovecn.teh.Sist., 57-60 (Russian).Google Scholar
  164. Chumakov, L.D. & V.G. Kurasov (1975). Interplay between reliability and maintenance costs of a technical system with exponential running time without failure and with periodic repair control. Nadezn.Dogovecn.teh.Sist., 53-57 (Russian).Google Scholar
  165. Cin, M.D. (1980). Availability analysis of a fault-tolerant computer system. IEEE Trans.Reliab. R-29, 265–268.CrossRefGoogle Scholar
  166. Çinlar, E. (1975). Markov renewal theory. A survey. Management Sci., Theory, 21, 727–752.zbMATHCrossRefGoogle Scholar
  167. Çinlar, E. (1976). On the structure of semi-Markov processes compared with Chung processes. Ann.of Probab., 4, 402–417.zbMATHCrossRefGoogle Scholar
  168. Çinlar, E. (1977). Conversion of semi-Markov processes to Chung processes. Ann.of Probab., 5, 180–199.CrossRefGoogle Scholar
  169. Çinlar, E. (1977). Markov additive processes and semi-regeneration. Proc.5th Conf.Probab.Theory, Brasov, 33-49.Google Scholar
  170. Çinlar, E. (1979). On increasing continuous processes. Stochastic Processes Appl., 9, 147–154.zbMATHCrossRefGoogle Scholar
  171. Clarotti, C.A. (1981). Limitations of minimal cut-set approach in evaluating reliability of systems with repairable components. IEEE Trans.Reliab. R-30, 335–338.CrossRefGoogle Scholar
  172. Coffman E.G. Jun. & I. Mitrani (1980). A characterization of waiting time performance realizable by single-server queues. Oper.Res., 28, 810–821.MathSciNetzbMATHCrossRefGoogle Scholar
  173. Cohen, M., J.C. Hershey & E.N. Weiss (1981). A stochastic service network model with application to hospital facilities. Oper.Res., 29, 1–22.MathSciNetzbMATHCrossRefGoogle Scholar
  174. Colard, J.P. & G. Latouche (1980). Algorithmic analysis of Markovian model for a system with batch and interactive jobs. Opsearch, 17, 12–32.MathSciNetzbMATHGoogle Scholar
  175. Collart, D. & A. Haurie (1980). On the control of care supply and demand in a urology department. Eur.J.Oper.Res., 4, 160–172.zbMATHCrossRefGoogle Scholar
  176. Consael, R. & J. Sonnenschein (1979). Modèles pseudo-markoviens. Cah. Cent.Etud.Rech.Oper., 21, 315–318.MathSciNetzbMATHGoogle Scholar
  177. Conolly, B. (see Q.H. Choo).Google Scholar
  178. Costes, A., Ch. Landrault & J.C. Laprie (1981). Parametric analysis of 2-unit redundant computer systems with corrective and preventive maintenance. IEEE Trans.Reliab., R-30, 139–144.CrossRefGoogle Scholar
  179. Courtois, P.J. (1978). Exact aggregation of queueing networks. Mathématiques Appl., 1er Colloq.AFCET-SMF, Palaiseau, I, 35-51.Google Scholar
  180. Cox, D.R. & V. Isham (1977). A bivariate point process connected with electronic counters. Proc.Roy.Soc.London, Ser.A, 356, 149–160.MathSciNetzbMATHCrossRefGoogle Scholar
  181. Crabill, T.B. (1974). Optimal control of a maintenance system with variable service rates. Operations Res., 22, 736–745.MathSciNetzbMATHCrossRefGoogle Scholar
  182. Crowley, J., F.Y. Hsieh & D.C. Tormey (1983). Some test statistics for use in multistate survival analysis. Biometrika, 70, 111–119.MathSciNetzbMATHCrossRefGoogle Scholar
  183. Cruon, R., D. Grouchko & A. Kaufmann (1975). Modèles mathématiques pour l’étude de la fiabilité des systèmes. Masson et Cie, Paris.Google Scholar
  184. Cubeddu, C. (1976). Schema di una regolzione del traffico all’incrocio di due strade. Rend.Sem.Fac.Sci.Univ.Cagliari, 46, 295–300.MathSciNetzbMATHGoogle Scholar
  185. Cullmann, G. (1980). Les chaînes de Markov multiples. Programmation dynamique. Masson et Cie, Paris.Google Scholar
  186. Cvetanov, I., J. Havel, T. Naneva & M. Vosvrda (1977). Stochastic model of supplying systems and their applications. Ekonom.-mat.Obzor, 13, 268–278 (Russian).Google Scholar
  187. Daduna, H. (1982). Passage times for overtake-free paths in Gordon-Newell networks. Adv.Appl.Probab., 14, 672–686.MathSciNetzbMATHCrossRefGoogle Scholar
  188. Dal, C.M. (1978). Self-diagnosis of interactive systems. Lect.Notes Biomath., 21, 229–244.CrossRefGoogle Scholar
  189. Dal, C.M. (1979). Fehlertolerante Systeme. Modelle der Zuverlaessigkeit, Verfuegbarkeit, Diagnose und Erneuerung. Leitfaden Ang. Math.Mech.LAMM, 50, Teubner-Stuttgart.Google Scholar
  190. Danielyan, Eh.A. & A.K. Pogosyan (1980). On two-sided estimations of the probability of a rare event in a special regenerative process. Uch.Zap.Erevan.Gos.Univ., Estestv.Nauki, 1 (143), 134–136 (Russian).Google Scholar
  191. Davidovich, Y.S. & V.M. Shurenkov (1974). Corrections of homogeneous Markovian processes. Teor.Verojatnost.mat.Statist.Sbornik, 10, 56–68 (Russian).Google Scholar
  192. Dayan, J. & D. Rappaport (1975). On convergence of spatially inhomogeneous multiphase transport systems. SIAM J.Appl.Math., 29, 12–19.MathSciNetzbMATHCrossRefGoogle Scholar
  193. Deb, R.K. (1976). Optimal control of batch service queues with switching costs. Adv.Appl.Probab., 8, 177–194.MathSciNetzbMATHCrossRefGoogle Scholar
  194. Debabrata, R. (see M.Agarwal).Google Scholar
  195. Degtyarev, E.K. & E.K. Kurako (1980). Investigation of the distribution of the operative memory of a computer with the aid of semi-Markov processes. Izvestija Akad.Nauk SSSR, Tekn.Kibern., 3, 73–79 (Russian).MathSciNetGoogle Scholar
  196. Dekker, R. & A. Hordijk (1983). Denumerable Markov decision chains: sensitive optimality criteria. Proc.11th Annual Meeting Oper. Res., Frankfurt, 453-460.Google Scholar
  197. DeLisi, C. (see W.A. Beyer).Google Scholar
  198. Deshmukh, S.D. (see S.D. Chikte).Google Scholar
  199. Deshmukh, S.D. & W. Winston (1977). A controlled birth and death process model of optimal product pricing under stochastically changing demand. J.Appl.Probab., 14, 328–339.MathSciNetzbMATHCrossRefGoogle Scholar
  200. D’Esposito, M.R. (see M. Carravetta).Google Scholar
  201. Deul, N. (1980). Stationarity conditions for multi-server queueing systems with repeated calls. Elektron.Informationsverarbeitung Kybernetik, 16, 607–613.MathSciNetzbMATHGoogle Scholar
  202. Diekmann, A. (1979). A dynamic stochastic version of the Pitcher-Hamblin-Miller model of collective violence. J.Math.Sociology, 6, 277–282.zbMATHCrossRefGoogle Scholar
  203. Dikarev, V.E. & N.A. Shishonok (1976). On the interval distribution of a class of Markov processes. Theory Probab.Math.Stat., 10, 69–72.Google Scholar
  204. Dimitrov, B.N. (1972). Sequences of renewal processes and random sums. Vycislit.Metody Programm., 18, 3–15 (Russian).Google Scholar
  205. Dimitrov, B.N. (1972). On uniform renewal theory. Vycislit.Metody Programm., 18, 24–30 (Russian).Google Scholar
  206. Dinse, G.E. & S.W. Lagakos (1980). The analysis of partially-censored data from a first-order semi-Markov model. J.Stat.Comput. Simulation, 11, 209–222.zbMATHCrossRefGoogle Scholar
  207. Dirickx, Y.M.I. & M.R. Rao (1974). Networks with gains in discrete dynamic programming. Management Sci., Theory, 20, 1428–1431.MathSciNetzbMATHCrossRefGoogle Scholar
  208. Dirickx, Y.M.I. & D. Koevoets (1977). A continuous review inventory model with compound Poisson demand process and stochastic lead time. Naval Res.Logist.Quart., 24, 577–585.MathSciNetzbMATHCrossRefGoogle Scholar
  209. Disney, R.L. (see W.P. Cherry).Google Scholar
  210. Disney, R.L., D.C. McNicke & B. Simon (1980). The M/G/1 queue with instantaneous Bernoulli feedback. Naval Res.Logist.Q., 27, 635–644.zbMATHCrossRefGoogle Scholar
  211. Dobrushin, R.L. & V.V. Prelov (1979). Asymptotic approach to the investigation of message switching networks of linear structure with a large number of centers. Probl.Inf.Transm., 15, 46–55.MathSciNetzbMATHGoogle Scholar
  212. Dobrushin, R.L. & Y.M. Sukhov (1976). Asymptotic analysis of a star-like network with large number of radial rays and message switching. Probl.Peredaci Inform., 12, 70–94 (Russian).zbMATHGoogle Scholar
  213. Doi, M. & H. Osawa (1978). A variation of the GI/M/1 queue utilizing idle time. Rep.Stat.Appl.Res.Union Jap.Sci.Eng., 25, 111–120.MathSciNetGoogle Scholar
  214. Domanovskaya, E.F. (1976). Stay time of a semi-Markov process in fixed state. Control, reliability and navigation. Interuniv. Collect.Sci.Works, Saransk, 3, 92–94 (Russian).Google Scholar
  215. Domanovskij, G.A. (1976). Total stay time of a semi-Markov process in a fixed set of states. Control, reliability and navigation. Interuniv.Collect.Sci.Works, Saransk, 3, 116–122 (Russian).Google Scholar
  216. Dominicis (de), R. (see M.Carravetta).Google Scholar
  217. Dominicis (de), R. (1979). Discrete-time non-homogeneous semi-Markov processes. Aerotec.Missili Spazio, 58, 111–113.zbMATHGoogle Scholar
  218. Dominicis (de), R. (1979). Processi stocastici semi-Markoviani non-omogenei conservativi. Riv.Mat.Sci.Econ.Soc., 2, 157–167.zbMATHGoogle Scholar
  219. Dominicis (de), R. (1980). Estimation of waiting average times and asymptotic behaviour of the semi-Markov process corresponding to a Markov renewal process. Statistica, 40, 467–475.MathSciNetzbMATHGoogle Scholar
  220. Dominicis (de), R. (1983). Spectral analysis of non linear semi-Markov processes. Proc.NATO ASI C, Math.Phys.Sci., 104, 407–415.Google Scholar
  221. Doshi, B.T. (1979). Generalized semi-Markov decision processes. J.Appl.Probab., 16, 618–630.MathSciNetzbMATHCrossRefGoogle Scholar
  222. Downs, T. (1977). An explicit form for system mean life. IEEE Trans. Reliab.R-26, 138-140.Google Scholar
  223. Dragut, M. (1981). Non-discounted semi-Markov decision processes with incomplete state information. Proc.6th Conf.Probab.Theory, Brasov, 403-411.Google Scholar
  224. Dubois, D. & J.P. Forestier (1982). Productivité et en-cours moyens d’un ensemble de deux machines séparées par une zone de stockage. RAIRO, Autom.Syst.Anal.Control, 16, 105–132.zbMATHGoogle Scholar
  225. D’Souza, C.A. & M.N. Gopalan (1975). Probabilistic analysis of a two-unit system with a single service facility for preventive maintenance and repair. Operations Res., 23, 173–177.MathSciNetzbMATHCrossRefGoogle Scholar
  226. Duma, I. (1980). Modèles semi-Markoviens pour les canaux numériques. An.Univ.Bucur., Mat., 29, 37–45.MathSciNetzbMATHGoogle Scholar
  227. Duyn Schouten (van der), F.A. (1983). Markov decision processes with continuous time parameter. Mathematical Centre Tracts, 164, Amsterdam.Google Scholar
  228. Dzirkal, E.V. & A.E. Shura-Bura (1980). Calculation of the reliability of a redundant group with unreliable switching and incomplete monitoring. Eng.Cybern., 18, 84–90.zbMATHGoogle Scholar
  229. Edwards, J.S. & R.W. Morgan (1982). Optimal control models in manpower planning. North-Holland Syst.Contr.Ser., 4, 143–176.Google Scholar
  230. El-Affendi, M.A. & D.D. Kouvatsos (1983). A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium. Acta Inf., 19, 339–355.MathSciNetzbMATHCrossRefGoogle Scholar
  231. Elejko, Y.I. (1979). Ergodic theorems for semi-Markov processes with an arbitrary phase space. Stoch.Process.Prob1.Math.Phys., Collect.Sci.Works, Kiev, 73-93 (Russian).Google Scholar
  232. Elejko, Y.I. (1980). Transients in the theory of multi-dimensional renewal with discrete time. Probab.Meth.of Infinite dimens. analysis, Collect.Sci.Works, Kiev, 47-60 (Russian).Google Scholar
  233. Elejko, Y.I. (1981). Limit distributions for a semi-Markov process with arbitrary phase space. Theory Probab.Math.Stat., 23, 55–61.Google Scholar
  234. Elejko, Y.I. (1981). Limit theorems for additive functionals defined on a semi-Markov process with an arbitrary phase space. Probabilistic infinite dimensional analysis, Collect.Sci.Works, Kiev, 44-50 (Russian).Google Scholar
  235. Elejko, Y.I. & V.M. Shurenkov (1980). Limit distributions of time averages for a semi-Markov process with finite number of states. Ukr.Math.J., 31, 475–479.zbMATHCrossRefGoogle Scholar
  236. Ewers, T. & V. Nollau (1976, 1977). Zur Steuerung halb-Markovscher Prozesse und ihrer Anwendung bei der Ermittlung optimaler Bedienungsstrategien in einem Mehrmaschinensystem. II, III; Wiss.Z.techn. Univ.Dresden, 25, 787–790; 26, 109-113.MathSciNetGoogle Scholar
  237. Ezov, I.I. (see G.L. Arsenisvili, V.N. Bandura & O.P. Borozdin).Google Scholar
  238. Ezov, I.I. & V.F. Kadankov (1981). The system M//p(**r)|1| in employment conditions. Analytical Meth.Probab.Theory, Collect.Sci. Works, Kiev, 75-83 (Russian).Google Scholar
  239. Ezov, I.I. & H. Sum (1977). Maximization processes with discrete time. Theory Probab.Math.Stat., 9, 87–94.Google Scholar
  240. Ezov, I.I. & O.M. Zaharin (1977). On one semi-Markov system with profits. Dopovidi Akad.Nauk Ukrain.R R, Ser.A, 1120-1122 (Ukrainian).Google Scholar
  241. Ezov, I.I. & O.M. Zaharin (1978). The time of stay of a complex randomized semi-Markov process in a fixed subset of states. Dopovidi Akad.Nauk Ukrain.RSR, Ser.A, 344-347 (Ukrainian).Google Scholar
  242. Ezov, I.I., I.Z. Gabrovski & O.M. Zaharin (1977). On a generalization of semi-Markov processes. Theory Probab.Math.Stat., 9, 49–62.Google Scholar
  243. Fajnberg, E.A. (1982). Non-randomized Markov and semi-Markov strategies in dynamic programming. Theory Probab.Appl., 27, 116–126.zbMATHCrossRefGoogle Scholar
  244. Falin, G.I. (1982). State consolidation in symmetrical partially accessible circuits. Probl.Control Inf.Theory, 11, 3–12 (Russian).MathSciNetGoogle Scholar
  245. Faure, R. & J.L. Lauriere (1974). Fiabilité et renouvellement des équipements. Applications élémentaires aux investissements. Coll.Programmation.Rech.Opér.Appl., 4, Gauthier-Villars, Paris.Google Scholar
  246. Federgruen, A. & P.J. Schweitzer (1978). Discounted and undiscounted value-iteration in Markov decision problems: a survey. Proc. Int.Conf.Dynamic Progr.Appl., Vancouver, 23-52.Google Scholar
  247. Federgruen, A. & P.J. Schweitzer (1978). The functional equations of undiscounted Markov renewal programming. Math.Oper.Res., 3, 308–321.MathSciNetzbMATHCrossRefGoogle Scholar
  248. Federgruen, A. & P.J. Schweitzer (1978). Foolproof convergence in multichain policy iteration. J.Math.Analysis Appl., 64, 360–368.MathSciNetzbMATHCrossRefGoogle Scholar
  249. Federgruen, A. & P.J. Schweitzer (1977). Geometric convergence of value-iteration in multichain Markov renewal programming. Amsterdam Mathematisch Centrum, BW 80/77, 37 p.Google Scholar
  250. Federgruen, A. & D. Spreen (1980). A new specification of the multichain policy iteration algorithm in undiscounted Markov renewal programs. Manage.Sci., 26, 1211–1217.MathSciNetzbMATHCrossRefGoogle Scholar
  251. Federgruen, A. & H.C. Tijms (1978). The optimality equation in average cost denumerable state semi-Markov decision problems, recurrence conditions and algorithms. J.Appl.Probab., 15, 356–373.MathSciNetzbMATHCrossRefGoogle Scholar
  252. Federgruen, A., G. de Leve & H.C. Tijms (1977). A general Markov decision method. I: Model and techniques; II: Applications. Adv.Appl.Probab., 9, 296–315 & 316-335.zbMATHCrossRefGoogle Scholar
  253. Federgruen, A., A. Hordijk & H.C. Tijms (1977). A note on simultaneous recurrence conditions on a set of denumerable stochastic matrices. Amsterdam Mathematisch Centrum, BW 85/77, 7 p.Google Scholar
  254. Federgruen, A., A. Hordijk & H.C. Tijms (1978). Recurrence conditions in denumerable state Markov decision processes. Proc.Int.Conf. Dynamic Progr.Appl., Vancouver, 3-22.Google Scholar
  255. Federgruen, A., A. Hordijk & H.C. Tijms (1979). Denumerable state semi-Markov decision processes with unbounded costs, average cost criterion. Stochastic Processes Appl., 9, 223–235.MathSciNetzbMATHCrossRefGoogle Scholar
  256. Federgruen, A., P.J. Schweitzer & H.C. Tijms (1977). Value-iteration in undiscounted Markov decision problems. II: geometric convergence; III: algorithms. Proc.Semin.Markov, Amsterdam, 141-151 & 153-159.Google Scholar
  257. Federgruen, A., P.J. Schweitzer & H.C. Tijms (1978). Contraction mappings underlying undiscounted Markov decision problems. J.Math.Analysis Appl., 65, 711–730.MathSciNetzbMATHCrossRefGoogle Scholar
  258. Federgruen, A., P.J. Schweitzar & H.C. Tijms (1983). Denumerable undiscounted semi-Markov decision processes with unbounded rewards. Math.Oper.Res., 8, 298–313.MathSciNetzbMATHCrossRefGoogle Scholar
  259. Feldman, R.M. (1976). Optimal replacement with semi-Markov shock models. J.Appl.Probab., 13, 108–117.zbMATHCrossRefGoogle Scholar
  260. Feldman, R.M. (1977). Optimal replacement with semi-Markov shock models using discounted costs. Math.Oper.Res., 2, 78–90.MathSciNetzbMATHCrossRefGoogle Scholar
  261. Feldman, R.M. (1978). A continuous review (s, S) inventory system in a random environment. J.Appl.Probab., 15, 654–659.MathSciNetzbMATHCrossRefGoogle Scholar
  262. Feldman, R.M. & C. Whittaker (1980). Moments for a general branching process in a semi-Markovian environment. J.Appl.Probab., 17, 341–349.MathSciNetzbMATHCrossRefGoogle Scholar
  263. Fetisov, V.N. (1979). A Markov approximation of a random sequence in optimal control problems. Eng.Cybern., 17, 31–37.zbMATHGoogle Scholar
  264. Fix, W. & K. Neumann (1979). Project scheduling by special GERT networks. Computing, 23, 299–308.zbMATHCrossRefGoogle Scholar
  265. Fleischmann, K. & U. Prehn (1978). Limit theorems for spatially homogeneous branching processes with a finite set of types.II. Math.Nachr., 82, 277–296.MathSciNetCrossRefGoogle Scholar
  266. Forestier, J.P. (see D.Dubois).Google Scholar
  267. Forestier, J.P. (1978). Optimisation de la commande des systèmes à représentation semi-markovienne. Math.Appl., 1er Colloq.AFCET SMF, Palaiseau, I, 337-346.Google Scholar
  268. Fortet, R. (1977). Panels et modèles de comportements. Publ.économétr., 10, 1–39.MathSciNetGoogle Scholar
  269. Foschini, G.J. (1982). Equilibria for diffusion models of pairs of communicating computers-symmetric case. IEEE Trans.Inf.Theory IT-28, 273-284.Google Scholar
  270. Foster, F.G. & H.G. Perros (1979). Hierarchical queue networks with partially shared servicing. J.Oper.Res.Soc., 30, 157–166.zbMATHGoogle Scholar
  271. Franken, P. (see K.Arndt).Google Scholar
  272. Franken, P. (1082). The point process approach to queueing theory and related topics. Seminarber., HumboIdt-Univ.Berlin, Sekt. Math., 43, 72 p.Google Scholar
  273. Franken, P. & A. Streller (1979). Stationary generalized regenerative processes. Theory Probab.Appl., 24, 79–90.MathSciNetzbMATHCrossRefGoogle Scholar
  274. Friedman, A.D. (see M.A. Breuer).Google Scholar
  275. Fries, P. (1980). Procedure for weighting failure rates in Markov reliability models for automatic systems. Siemens Forsch. Entwicklungsber., 9, 305–311.MathSciNetzbMATHGoogle Scholar
  276. Furukawa, N. (1980). Nearly optimal policies and stopping times in Markov decision processes with general rewards. Bull.Math. Stat., 19, 89–109.MathSciNetzbMATHGoogle Scholar
  277. Furukawa, N. (1982). Recurrence set-relations in stochastic multi-objective dynamic decision processes. Math.Operationsforsch. Stat., Ser.Optimization 13, 113–121.MathSciNetzbMATHCrossRefGoogle Scholar
  278. Furukawa, N. & S. Iwamoto (1974). Correction to “Markovian decision processes with recursive reward functions”. Bull.Math.Statist., 16, 127.zbMATHGoogle Scholar
  279. Gabrovsky, I.Z. (see I.I. Ezov).Google Scholar
  280. Gadasin, V.A. (1975). Probabilistic properties of a system with a symmetric radial-ring structure. Automat.Remote Control, 35, 1503–1509.MathSciNetGoogle Scholar
  281. Gaede, K.W. (1974). Sensitivitaetsanalyse fuer einen semi-Markov Prozess. Z.Operat.Res., Ser.A 18, 197–204.MathSciNetzbMATHGoogle Scholar
  282. Gaede, K.W. (1977). Zuverlaessigkeit, mathematische Modelle. Theorie und Praxis des Operations Research. Carl Hanser Verlag, Munchen.Google Scholar
  283. Gaede, K.W. (1977). Einiges zur Sensitivitaet stochastischer 0R-Modelle. Quant.Wirtsch.Forsch., W.Krelle zum 60.Geb., 237-244.Google Scholar
  284. Gaede, K.W. (1983). Verallgemeinerte Kontrollgrenzen bei Erzatzproblemen. Operations Research. Proc.11th Annual Meet., Frankfurt, 433-438.Google Scholar
  285. Gail, M.H. (see C.C. Brown).Google Scholar
  286. Gallisch, E. (1979). On monotone optimal policies in a queueing model of M/G/1 type with controllable service time distribution. Adv.Appl.Probab., 11, 870–887.MathSciNetzbMATHCrossRefGoogle Scholar
  287. Gamkrelidze, R.V. (ed.) (1974). Probability Theory. Mathematical Statistics. Theoretical Cybernetics. Band 11. “VINITI” Moskva (Russian).Google Scholar
  288. Gardos, E. & T. Toeroek (1980). Population processes and computer networks. Alkalmazott Mat.Lapok, 6, 291–311 (Hungarian).zbMATHGoogle Scholar
  289. Garifullin, Z.G. & V.A. Ivnitskij (1977). On stationary distribution of state probabilities for a generalized scheme of birth and death with a symmetrical graph of transitions. Kibernetika, Kiev, 4, 92-96 (Russian).Google Scholar
  290. Gasanenko, V.A. (1981). On thinning a semi-Markov process with a countable set of states. Theory Probab.Math.Stat., 22, 25–29.MathSciNetzbMATHGoogle Scholar
  291. Gatarek, D. (1982). On a reliability problem by stochastic control problems. Syst.Control Lett., 2, 248–254.MathSciNetzbMATHCrossRefGoogle Scholar
  292. Gavish, B. & P.J. Schweitzer (1976). An optimality principle for Markovian decision processes. J.Math.Analysis, 54, 173–184.MathSciNetzbMATHCrossRefGoogle Scholar
  293. Gazis, D.C. (ed). (1974). Traffic Science. Wiley Interscience Publication, Wiley & Sons.Google Scholar
  294. Gelenbe, E. (1979). Probabilistic models of computer systems. II: Diffusion approximation, waiting times and batch arrivals. Acta Inf., 12, 283–303.MathSciNetzbMATHGoogle Scholar
  295. Gelenbe, E & I. Mitrani (1980). Analysis and synthesis of computer systems. Academic Press, London.zbMATHGoogle Scholar
  296. Gelenbe, E. & G. Pujolle (1976). The behaviour of a single queue in a general queueing network. Acta Informatica, 7, 123–136.MathSciNetzbMATHCrossRefGoogle Scholar
  297. Geninson, B.A., A.A. Rubchinshij & T.M. Vinogradskaya (1984). Semi-Markov decision making processes with vector gains. Theory Probab.Appl., 28, 191–193.zbMATHCrossRefGoogle Scholar
  298. Genis, Y.G. (1978). The asymptotic behaviour of a flow of rare events in a regenerating process. Eng.Cybern., 16, 77–84.zbMATHGoogle Scholar
  299. Genis, Y.G. (1979). Stochastic system behaviour described by semi-renewal process. Autom.Remote Control, 40, 668–681.zbMATHGoogle Scholar
  300. Genis, Y.G. & B.Y. Nechaev (1976). Behaviour of a complex system described by a semi-Markov process with a finite number of states. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 76-84 (Russian).Google Scholar
  301. Georganas, N.D. (see A. Chatterjee).Google Scholar
  302. Gergely, T. & T.L. Toeroek (1976). A stochastic process to describe the virtual waiting time in a discrete-time queueing system. Prog.Oper.Res., Eger 1974, Colloq.Math.Soc.Janos Bolyai, 12, 417–423.Google Scholar
  303. Gerrard, R. (1983). Regularity conditions for semi-Markov and Markov chains in continuous time. J.Appl.Probab., 20, 505–512.MathSciNetzbMATHCrossRefGoogle Scholar
  304. Gersht, A.M. (1978). Analysis of certain low-traffic queueing systems. Autom.Remote Control, 39, 491–499.zbMATHGoogle Scholar
  305. Gershwin, S.B. & I.C. Schick (1979). Analytic methods for calculating performance measures of production lines with buffer storages. Proc.IEEE Conf.Decision & Control, San Diego, 618-624.Google Scholar
  306. Gertsbach, I. (1976). Sufficient optimality conditions for control-limit policy in a semi-Markov process. J.Appl.Probab., 13, 400–406.MathSciNetzbMATHCrossRefGoogle Scholar
  307. Gestri, G. H.A.K. Mastebroek & W.H. Zaagman (1980). Stochastic constancy, variability and adaptation of spike generation: performance of a giant neuron in the visual system of the fly. Biol.Cybern., 38, 31–40.zbMATHCrossRefGoogle Scholar
  308. Gheorghe, A.V. (1976). On risk-sensitive Markovian decision models for complex systems maintenance. Econom.Comput.econom.Cybernetics Studies Res., 31-46.Google Scholar
  309. Gheorghe, A.V. (1977). Partially observable Markov processes with a risk-sensitive decision-maker. Revue Roumaine Math.Pur.Appl., 22, 461–482.MathSciNetzbMATHGoogle Scholar
  310. Gheorghe, A.V. (1979). Systems engineering. Models and computational techniques. Editura Academiei Republicii Socialiste Romania.Google Scholar
  311. Gheorghe, A.V. (1979). Markovian models with logical conditions for fault isolation with insufficient observations. Revue Roumaine Math.Pur.Appl., 24, 1047–1064.MathSciNetGoogle Scholar
  312. Gheorghe, A.V. (1979). On maintenance policies for multifunctional systems using semi-Markov decision models. Revue Roum.Math. Pur.Appl., 24, 1337–1353.MathSciNetzbMATHGoogle Scholar
  313. Gheorghe, A.V. (1980). Reliability prediction of systems with semi-Markov structure. Revue Roum.Math.Pur.App1., 25, 1225–1241.MathSciNetzbMATHGoogle Scholar
  314. Ghosal, A. (see J.Affisoo).Google Scholar
  315. Gilbert, G. (1973). Semi-Markov processes and mobility; a note. J.Math.Sociology, 3, 139–145.zbMATHCrossRefGoogle Scholar
  316. Gill, R.D. (1980). Nonparametric estimation based on censored observations of a Markov renewal process. Z.Wahrscheinlichkeitstheor.Verw.Geb., 53, 97–116.zbMATHCrossRefGoogle Scholar
  317. Gillert, H. (1976). Maximum-likelihood-Schaetzungen fuer Parameter in semimarkovschen Prozessen. Wiss.Z.Tech.Univ.Dres., 25, 1163–1166.MathSciNetzbMATHGoogle Scholar
  318. Giorgadze, A.H. & Eh.I. Kistauri (1977). Parallel decomposition of Markov processes. Tr.Inst.Kibern., 1, 196–206.Google Scholar
  319. Gittins, J.C. (1982). Forwards induction and dynamic allocation indices. Proc.NATO ASI Deterministic & Stochastic Scheduling, 125-156.Google Scholar
  320. Girmes, D.H. & M.F. Ramalhoto (1977). Markov-renewal approach to counter theory. Proc.Eur.Meet.Stat.Grenoble, 581-590.Google Scholar
  321. Glaz, J. (1981). Clustering of events in a stochastic process. J.Appl.Probab., 18, 268–275.MathSciNetzbMATHCrossRefGoogle Scholar
  322. Glazebrook, K.D. (1976). Stochastic scheduling with order constraints. Int.J.Systerns Sci., 7, 657–666.MathSciNetzbMATHCrossRefGoogle Scholar
  323. Glazebrook, K.D. (1978). On a class of non-Markov decision processes. J.Appl.Probab., 15, 689–698.MathSciNetzbMATHCrossRefGoogle Scholar
  324. Gnedenko, B.V. & D. Koenig (ed) (1983). Handbuch der Bedienungstheorie I: Grundlagen und Methoden. Akademie-Verlag, Berlin.zbMATHGoogle Scholar
  325. Gnedenko, B.V. & A.D. Soloviev (1974). A general allocation problem with repair. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 113-118 (Russian).Google Scholar
  326. Goel, A.L., T. Nakagawa & S. Osaki (1975). Stochastic behaviour of an intermittently used system. Revue Franc.Automat.Inform.Rech. Opérat., 9, 101–112.MathSciNetzbMATHGoogle Scholar
  327. Gondran, M. & A. Pages (1980). Fiabilité des systèmes. Editions Eyrolles, Paris.Google Scholar
  328. Goodman, I.R. & S. Kotz (1981). Hazard rates based on isoprobability contours. Proc.NATO ASI Statistical Distributions in Sc.Work, 5, 289–309.MathSciNetCrossRefGoogle Scholar
  329. Gopalan, M.N. (see C.A. D’Souza).Google Scholar
  330. Grandori Guagenti, E. (1980). Stochastic processes in the modelling of earthquake occurrence. Proc.Conf.Numer.Tech.Stoch.Systems, Gargnano, 205-216.Google Scholar
  331. Grandori Guagenti, E. & C. Molina (1982). Dynamic semi-Markov systems in earthquake engineering. Rend.Semin.Mat.Torino, 119-133.Google Scholar
  332. Grassmann, W. (1977). Transient solutions in Markovian queues. An algorithm for finding them and determining their waiting-time distributions. Eur.J.Oper.Res., 1, 396–402.MathSciNetzbMATHGoogle Scholar
  333. Grassman, W. (1981). Stochastic systems for management. North-Holland, New-York.Google Scholar
  334. Graves, S.C. & J. Keilson (1981). The compensation method applied to a one-product production/inventory problem. Math.Oper.Res., 6, 246–262.MathSciNetzbMATHCrossRefGoogle Scholar
  335. Grigg, C.H. (see R.N. Allan).Google Scholar
  336. Grinold, R.C. (1976). Manpower planning with uncertain requirements. Operations Res., 24, 387–399.zbMATHCrossRefGoogle Scholar
  337. Grinshpan, L.A. (19). Analysis of the stationary regimes of semi-Markov processes by the method of fictitious states.Google Scholar
  338. Groenewegen, L.P.J. & K.Van Hee (1977). Markov decision processes and quasi-martingales. Proc.Eur.Meet.Stat.Grenoble, 453-459.Google Scholar
  339. Grouchko, D. (see R. Cruon).Google Scholar
  340. Gruver, W.A. & C.F. Klein (1981). Optimal control of Markovian queueing systems. Optim.Control Appl.Methods, 2, 23–34.MathSciNetzbMATHGoogle Scholar
  341. Gubenko, L.G. (1974). Optimal control of a monotone Markov process. Kibernetika, Kiev, 1, 104-106 (Russian).Google Scholar
  342. Gupta, A. (1981). Markovian approach to determine optimal maintenance policies for production systems. Indian J.Technol., 19, 353–356.zbMATHGoogle Scholar
  343. Gupta, S.K. & J.K. Sengupta (1975). Application of reliability programming to production planning. Intern.J.Systems Sci., 6, 633–644.zbMATHCrossRefGoogle Scholar
  344. Gupta, S. & Y.P. Gupta (1978). Chi-square goodness of fit test for equilibrium Markov renewal process. Metron, 36, 187–196.MathSciNetzbMATHGoogle Scholar
  345. Gupta, Y.P. (see S. Gupta).Google Scholar
  346. Gupta, Y.P. (1983). Counting processes within Markov renewal processes. S.Afr.Stat.J., 17, 107–119.zbMATHGoogle Scholar
  347. Gupta, Y.P. & S.C. Sharma (1976). Some results in Markov renewal processes. Metron, 34, 81–92.MathSciNetzbMATHGoogle Scholar
  348. Gusak, D.V. & V.S. Korolyuk (1976). The asymptotic behaviour of semi-Markov processes with a decomposable set of states. Theor. Probab.Math.Statist., 5, 43–51.Google Scholar
  349. Habel, I. (1980). Ueber einen speziellen stationaeren diskreten Markovschen Entscheidungsprozess mit Fehlerbetrachtung zum H-Algorithmus. Wiss.Z.Tech.Hoch-sch.Leipz., 4, 303–307.zbMATHGoogle Scholar
  350. Hannan, E. M.P. Mirabile & J. Schmee (1979). An examination of patient referral and discharge policies using a multiple objective semi-Markov decision process. J.Oper.Res.Soc., 30, 121–129.zbMATHCrossRefGoogle Scholar
  351. Harlamov, B.P. (1976). A “correct exit” property and a limit theorem for the semi-Markov processes. Zap.Naucn.Semin.Leningr.Otd. Mat.Inst.Steklov, 72, 186–201 (Russian).MathSciNetGoogle Scholar
  352. Harlamov, B.P. (1977). On convergence of semi-Markov walks to a continuous semi-Markov process. Theory Probab.Appl., 21, 482–498.CrossRefGoogle Scholar
  353. Harlamov, B.P. (1978). The set of regeneration times of random processes. J.Soviet Math., 9, 102–107.CrossRefGoogle Scholar
  354. Harlamov, B.P. (1978). Random processes with semi-Markov chains of hitting times. J.Soviet Math., 9, 107–128.CrossRefGoogle Scholar
  355. Harlamov, B.P. (1980). A criterion for the Markov property for continuous semi-Markov processes. Teor.Verojatn, Primen., 25, 535–548.MathSciNetGoogle Scholar
  356. Harlamov, B.P. (1980). Additive functionals and a change of time which preserves the semi-Markov property of a process. Zap. Nauchn.Semin.Leningr.Otd.Mat.Inst.Steklov, 97, 203–216 (Russian).Google Scholar
  357. Harlamov, B.P. (1981). A Markov property test for semi-Markov processes. Theory Probab.Appl., 25, 526–539.CrossRefGoogle Scholar
  358. Harlamov, B.P. (1982). Outleading sequences and continuous semi-Markov processes on the line. Zap.Nauchn.Semin.Leningr.Otd. Mat.Inst.Steklov, 119, 230–236 (Russian).Google Scholar
  359. Harlamov, B.P. (1983). Property of “correct exit” and one limit theorem for semi-Markov processes. J.Soviet Math., 23, 2352–2362.CrossRefGoogle Scholar
  360. Harrison, P.G. (1981). Transient behaviour of queueing networks. J.Appl.Probab., 18, 482–490.MathSciNetzbMATHCrossRefGoogle Scholar
  361. Harrison, J.M. & A.J. Lemoine (1981). A note on networks of infinite-server queues. J.Appl.Probab., 18, 561–567.MathSciNetzbMATHCrossRefGoogle Scholar
  362. Harrison, J.M. & M.I. Reiman (1981). Reflected Brownian motion on an orthant. Ann.Probab., 9, 302–308.MathSciNetzbMATHCrossRefGoogle Scholar
  363. Harrison, J.M. & M.I. Reiman (1981). On the distribution of multidimensional reflected Brownian motion. SIAM J.Appl.Math., 41, 345–361.MathSciNetzbMATHCrossRefGoogle Scholar
  364. Harrison, J.M. & S.I. Resnick (1978). The recurrence classification of risk and storage processes. Math.Oper.Res., 3, 57–66.MathSciNetzbMATHCrossRefGoogle Scholar
  365. Hastings, N.A.J. & J.M.C. Mello (1978). Decision networks. John Wiley & Sons.Google Scholar
  366. Hatoyama, Y. (1977). Markov maintenance models with control of queue. J.Operations Res.Soc.Japan, 20, 164–181.MathSciNetzbMATHGoogle Scholar
  367. Haurie, A. (see A. Alj, F. Chauny & D. Collart).Google Scholar
  368. Haurie, A. (1982). A note on “Multilayer control of large Markov chains”. IEEE Trans.Autom.Control AC-27, 746-747.Google Scholar
  369. Haussmann, W. (see R. Avenhaus).Google Scholar
  370. Have1, J. (see I.Cventanov).Google Scholar
  371. Hawkes, J. (1977). Intersections of Markov random sets. Z.Wahrscheinlichkeitstheorie Verw. Geb., 37, 243–251.MathSciNetzbMATHCrossRefGoogle Scholar
  372. Hayne, W.J. & K.T. Marshall (1977). Two-characteristic Markov-type manpower flow models. Navals Res.Logist.Q., 24, 235–255.MathSciNetzbMATHCrossRefGoogle Scholar
  373. Hayre, L.S. (1983). A note on optimal maintenance policies for deciding whether to repair or replace. Eur.J.Oper.Res., 12, 171–175.zbMATHCrossRefGoogle Scholar
  374. Hee (Van), K. (see L.P.J. Groenenwegen).Google Scholar
  375. Heffes, H. (1982). Moment formulae for a class of mixed multi-job-type queueing networks. Bell.Syst.Tech.J., 61, 709–745.zbMATHGoogle Scholar
  376. Heidelberger, P. (1980). Variance reduction techniques for the simulation of Markov processes. I. Multiple estimates. IBM J. Res.Dev., 24, 570–581.MathSciNetzbMATHCrossRefGoogle Scholar
  377. Heidelberger, P. & D.L. Iglehart (1979). Comparing stochastic systems using regenerative simulation with common random numbers. Adv. Appl.Probab., 11, 804–819.MathSciNetzbMATHCrossRefGoogle Scholar
  378. Heidelberger, P. & M.S. Meketon (1982). A renewal theoretic approach to bias reduction in regenerative simulations. Manage.Sci., 28, 173–181.MathSciNetzbMATHCrossRefGoogle Scholar
  379. Helary, J.M. & R. Pedrono (1983). Recherche opérationnelle. Travaux dirigés. Modèles stochastiques: chaînes de Markov, files d’attente. Réseaux de files d’attente. Hermann, Paris.Google Scholar
  380. Heiland, I.S. (1981). Convergence to diffusions with regular boundaries. Stochastic Processes Appl., 12, 27–58.CrossRefGoogle Scholar
  381. Hellwig, M.F. (1980). Stochastic processes of temporary equilibria. J.Math.Econ., 7, 287–299.MathSciNetzbMATHCrossRefGoogle Scholar
  382. Helm, W.E. & R. Schassberger (1982). Insensitive generalized semi-Markov schemes with point process input. Math.Oper.Res., 7, 129–138.MathSciNetzbMATHCrossRefGoogle Scholar
  383. Henderson, W. (1983). Non-standard insensitivity. J.Appl.Probab., 20, 288–296.MathSciNetzbMATHCrossRefGoogle Scholar
  384. Hennion, H. (1982). Transience de certaines chaînes semi-Markoviennes. Ann.Inst.Henri Poincaré, Nouv.Sér., Sect.B, 18, 277–291.MathSciNetzbMATHGoogle Scholar
  385. Hershey, J.C. (see M.A. Cohen).Google Scholar
  386. Hillier, F.S. (see R.W. Boling).Google Scholar
  387. Hinderer, K. (1975). Neuere Resultate in der stochastischen dynamischen Optimierung. Z.Angew.Math.Mech., 55, Sonderheft, T16-T26.Google Scholar
  388. Hines, W.G.S. (1976). Improving a simple monitor of a system with sudden parameter changes. IEEE Trans.Inform.Theory IT-22, 496-499.Google Scholar
  389. Hipp, Ch. (1983). Asymptotic expansions in the central limit theorem for compound and regenerative processes. Statistics, Univ. Cologne, Preprint, 39 p.Google Scholar
  390. Hochman, H.G. (1980). Models for neural discharge which lead to Markov renewal equations for probability density. Math.Biosci., 51, 125–139.MathSciNetzbMATHCrossRefGoogle Scholar
  391. Hoepfinger, E. (1980). Dynamic programming of stochastic activity networks with cycles. Lect.Notes Control Inf.Sci., 23, 309–315.CrossRefGoogle Scholar
  392. Homma, H. & K. Tanaka (1979). Non-cooperative n-person semi-Markov game. Sci.Rep.Niigata Univ., Ser.A, 16, 23–34.MathSciNetzbMATHGoogle Scholar
  393. Hofri, M. (1978). A generating-function analysis of multiprogramming queues. Internat.J.Computer Inform.Sci., 7, 121–155.MathSciNetzbMATHCrossRefGoogle Scholar
  394. Ho, Y.C. (see E.M. Akif).Google Scholar
  395. Hordijk, A. (see R.Dekker & A.Federgruen).Google Scholar
  396. Hordijk, A. & L.C.M. Kallenberg (1981). Linear programming methods for solving finite Markovian decision problems. Proc.1980 Vortr.Jahrestag DGOR, Essen, 468-482.Google Scholar
  397. Hordijk, A. & R. Schassberger (1982). Weak convergence for generalized semi-Markov processes. Stochastic Processes Appl., 12, 271–291.MathSciNetzbMATHCrossRefGoogle Scholar
  398. Hordijk, A., P.J. Schweitzer & H. Tijms (1975). The asymptotic behaviour of the minimal total expected cost for the denumerable state Markov decision model. J.Appl.Probab., 12, 298–305.MathSciNetzbMATHCrossRefGoogle Scholar
  399. Hordijk, A., O.J. Vrieze & G.L. Wanrooij (1976). Semi-Markov strategies in stochastic games. Amsterdam Mathematisch Centrum, BW 68/76, 9 p.Google Scholar
  400. Hordijk, A., O.J. Vrieze & G.L. Wanrooij (1983). Semi-Markov strategies in stochastic games. Int.J.Game Theory, 12, 81–89.MathSciNetzbMATHCrossRefGoogle Scholar
  401. Hsieh, F.Y. (see J. Crowley).Google Scholar
  402. Huang, Z. (1982). Generalized renewal sequences, semi-p-functions and their F-function clusters. Acta Sci.Nat.Univ.Sunyatseni, 2, 30–38 (Chinese).Google Scholar
  403. Hughes, J.S. (1980). A note on quality control under Markovian deterioration. Oper.Res., 28, 421–424.zbMATHCrossRefGoogle Scholar
  404. Hunter, J.J. (1982). Generalized inverses and their application to applied probability problems. Linear Algebra Appl., 45, 157–198.MathSciNetzbMATHCrossRefGoogle Scholar
  405. Hunter, J.J. (1983). Filtering of Markov renewal queues. I: Feedback; II: Birth-death queues. Adv.Appl.Probab., 15, 349–375 & 375-391.zbMATHCrossRefGoogle Scholar
  406. Idzik, A. (1977). On Markov policies in continuous time discounted dynamic programming. Trans.7th Prague Conf.Vol.A, 265-276.Google Scholar
  407. Iglehart, D.L. (see Ph. Heidelberger).Google Scholar
  408. Iglehart, D.L. (1976). Simulating stable stochastic systems. Quantile estimation. J.Assoc.Comput.Machin., 23, 347–360.MathSciNetzbMATHCrossRefGoogle Scholar
  409. Iglehart, D.L. & G.S. Shedler (1979). Regenerative simulation of response times in networks of queues with multiple job types. Acta Informatica 12, 159–175.MathSciNetzbMATHCrossRefGoogle Scholar
  410. Iglehart, D.L. & G.S. Shedler (1981). Regenerative simulation of response times in networks of queues: statistical efficiency. Acta Informatica 15, 347–363.MathSciNetzbMATHCrossRefGoogle Scholar
  411. Iglehart, D.L. & G.S. Shedler (1983). Statistical efficiency of regenerative simulation methods for networks of queues. Adv. Appl.Probab., 15, 183–197.MathSciNetzbMATHCrossRefGoogle Scholar
  412. Iglehart, D.L. & G.S. Shedler (1983). Simulation of non-Markovian systems. IBM J.Res.Dev., 27, 472–480.MathSciNetzbMATHCrossRefGoogle Scholar
  413. Inaba, F.S. (1978). On stochastic entry and exit without expectations. Review Econ.Studies, 45, 535–545.MathSciNetzbMATHCrossRefGoogle Scholar
  414. Inagaka, T. K. Inoue, E. Sakino & I. Takami (1978). Optimal allocation of fault detectors. IEEE Trans.Reliab.R-27, 360-362.Google Scholar
  415. Incerti, S. (see F. Aluffi).Google Scholar
  416. Inoue, K. (see T. Inagaki).Google Scholar
  417. Isham, V. (see D.R. Cox).Google Scholar
  418. Ivchenko, G.I., V.A. Kashtanov & I.N. Kovalenko (1982). Theory of mass service. Moskva “Vysshaja Shkola” (Russian).Google Scholar
  419. Ivnitskij, V.A. (see Z.G. Garifullin).Google Scholar
  420. Ivnitskij, V.A. (1979). Connections between the stationary probabilities of the states of queueing systems at an arbitrary instant, the instant of placing an order, and the instant of exit of an order. Eng.Cybern., 17, 66–76.zbMATHGoogle Scholar
  421. Ivnitskij, V.A. (1982). On a condition of invariance of stationary probabilities for queueing networks. Theory Probab.Appl., 27, 196–201.zbMATHCrossRefGoogle Scholar
  422. Iwase, S., K. Tanaka & K. Wakuta (1976). On Markov games with the expected average reward criterion. Sci.Rep.Niigata Univ., Ser.A, 12, 31–41.MathSciNetGoogle Scholar
  423. Jagers, P. (1983). On the Maltusianness of general branching processes in abstract type spaces. Probability & Mathematical Statistics, Essays in Hon.C.G. Esseen, 53-61.Google Scholar
  424. Jain, G.C. & M.S.H. Khan (1980). On designing the capacity of a reservoir. Biom.J., 22, 359–369.MathSciNetzbMATHCrossRefGoogle Scholar
  425. Jain, J.L. & S.G. Mohanty (1981). Busy period distributions for two heterogeneous queueing models involving batches. INFOR, Can. J.Oper.Res.Inf.Process. 19, 133–139.Google Scholar
  426. Jaiswal, N.K. & J.V. Krishna (1980). Analysis of two-unit-dissimilar standby redundant system with administrative delay in repair. Int.J.Syst.Sci., 11, 495–511.zbMATHCrossRefGoogle Scholar
  427. Jaiswal, N.K. & K.G. Ramamurthy (1982). Some results for pseudo semi-Markov process. Math.Operationsforsch.Stat. Ser.Optimization, 13, 123–132.MathSciNetzbMATHCrossRefGoogle Scholar
  428. Jaiswal, N. K. Karmeshu & N.S. Rangaswamy (1982). A semi-Markovian model for cell survival after irradiation. Biom.J., 24, 63–68.MathSciNetzbMATHCrossRefGoogle Scholar
  429. Jannusch, E. & V. Nollau (1982). Zur Verallgemeinerung eines sukzessiven Approximationsverfahrens von Van der Wal auf semi-Markovsche Entscheidungsprozesse. Math.Operationsforsch.Stat., Ser.Optimization, 13, 299–307.MathSciNetzbMATHCrossRefGoogle Scholar
  430. Jansen, U. (1983). A generalization of intensivity results by cyclically marked stationary point processes. Elektron. Informationsverarbeitung Kybernetik, 19, 307–320.MathSciNetzbMATHGoogle Scholar
  431. Jansen, U. & D. Koenig (1976). Invariante stationaere Zustandswahrscheinlichkeiten fuer eine Klasse stochastischer Modelle mit funktioneilen Abhaengigkeiten. Math.Operationsforsch.Statistik, 7, 497–522.zbMATHCrossRefGoogle Scholar
  432. Jansen, U. & D. Koenig (1980). Insensitivity and steady-state probabilities in product form for queueing networks. Elektron. Informationsverarbeitung Kybernetik, 16, 385–397.zbMATHGoogle Scholar
  433. Jansen, U., D. Koenig & K. Nawrotzki (1979). A criterion of insensitivity for a class of queueing systems with random marked point processes. Math.Operationsforsch.Statistik, Ser.Optimization, 10, 379–403.zbMATHCrossRefGoogle Scholar
  434. Jansen, U., D. Koenig, M. Kotzurek & H. Rabe (1976). Ergebnisse von Invarianzuntersuchungen fuer ausgewaehlte Bedienungs-und Zuverlaessigkeitssysteme. Math.Operationsforsch.Statistik, 7, 523–556.zbMATHCrossRefGoogle Scholar
  435. Janssen, J. (1976). Extension of a two-sided inequality of Daley and Moran to the completely semi-Markov queueing model. Cahiers Centre Etud.Rech.Opér., 18, 459–469.zbMATHGoogle Scholar
  436. Janssen, J. (1976). Some duality results in semi-Markov chain theory. Revue Roum.Math.Pur.Appl., 21, 429–441.zbMATHGoogle Scholar
  437. Janssen, J. (1977). Absorption problems in semi-Markov chains. Proc. Eur.Meet.Statist., Grenoble, 481-488.Google Scholar
  438. Janssen, J. (1977). The semi-Markov model in risk theory. Proc.2nd Eur.Congr.Adv.Oper.Res., Stockholm, 613-621.Google Scholar
  439. Janssen, J. (1978). Absorption problems in two-dimensional semi-Markov chains. Bull.Soc.Math.Belg., Sér.A, 30, 123–134.zbMATHGoogle Scholar
  440. Janssen, J. (1978). Some prediction problems in semi-Markov queueing models and related topic. Proc.2nd Symp.Oper.Res., Aachen, 702-712.Google Scholar
  441. Janssen, J. (1979). Some explicit results for semi-Markov models in risk theory and in queueing theory. Oper.Res.Verfahren, 33, 217–231.zbMATHGoogle Scholar
  442. Janssen, J. (1981). Generalized risk models. Cah.Cent.Etud.Rech. Opér., 23, 225–244.zbMATHGoogle Scholar
  443. Janssen, J. (1982). Modèles de risque semi-Markoviens. Cah.Cent. Etud.Rech.Oper., 24, 261–280.Google Scholar
  444. Janssen, J. (1982). Strong laws for semi-Markov chains with a general state space. Ric.Mat., 31, 405–414.zbMATHGoogle Scholar
  445. Janssen, J. (1982). Stationary semi-Markov models in risk and queueing theories. Scand.Actuarial J., 199-210.Google Scholar
  446. Janssen, J. (1982). Determination de la valeur de la probabilité de ruine avec une réserve initiale nulle pour le modèle de risque semi-Markovien. Mitt.Ver.Schweiz.Versicherungsmath., 275-283.Google Scholar
  447. Janssen, J. (1982). Modèles de risques semi-Markoviens. Cah.Cent. Etud.Rech.Opér., 24, 261–280.Google Scholar
  448. Janssen, J. & J.M. Reinhard (1982). Some duality results for a class of multivariate semi-Markov processes. J.Appl.Probab., 19, 90–98.MathSciNetzbMATHCrossRefGoogle Scholar
  449. Jensen, U. (see K. Bosch).Google Scholar
  450. Jensen, U. (1981). Zustandsabhaengige Erneuerungsstrategien — Ein Modell aus der Instandhaltungstheorie. Proc.Jahrestag Oper. Res., DGOR, Essen, 251-252.Google Scholar
  451. Jo, K.Y. (1983). Optimal service-rate control of exponential queueing systems. J.Oper.Res.Soc.Japan, 26, 147–165.MathSciNetzbMATHGoogle Scholar
  452. Jo, K.Y. & S. Stidham jun. (1983). Optimal service-rate control of M/G/1 queueing systems using phase methods. Adv.Appl.Probab., 15, 616–637.MathSciNetzbMATHCrossRefGoogle Scholar
  453. Johansen, S.G. & S. Stidham jr. (1980). Control of arrivals to a stochastic input-output system. Adv.Appl.Probab., 12, 972–999.MathSciNetzbMATHCrossRefGoogle Scholar
  454. Jolkof, S. & V. Rykov (1981). Generalized regenerative processes with embedded regeneration periods and their application. Math. Operationsforsch.Stat., 12, 575–591.MathSciNetzbMATHCrossRefGoogle Scholar
  455. Kadankof, V.F. (see I.I. Ezov).Google Scholar
  456. Kadota, Y. (1979). Countable state Markovian decision processes under the Doeblin conditions. Bull.Math.Stat., 18, 85–94.MathSciNetzbMATHGoogle Scholar
  457. Kadyrova, I.I. (1979). Stochastic equations for jump processes. Theory Probab.Math.Stat., 18, 67–76.zbMATHGoogle Scholar
  458. Kakumanu, P. (1977). Relation between continuous and discrete time Markovian decision problems. Naval Res.Logist.Q., 24, 431–439.MathSciNetzbMATHCrossRefGoogle Scholar
  459. Kalashnikov, V.V. (1977). Continuity of the characteristics of regenerative processes. Izvestija Akad.Nauk SSSR, tehn.Kibernet. 87-96 (Russian).Google Scholar
  460. Kalashnikov, V.V. (1979). Estimates of the stability of innovation processes. Eng.Cybern., 17, 63–67.zbMATHGoogle Scholar
  461. Kalashnikov, V.V. & V.A. Zhilin (1979). Stability estimates of regenerating processes and their application to priority service systems. Eng.Cybern., 17, 82–89.zbMATHGoogle Scholar
  462. Kallenberg, L.C.M. (see A. Hordijk).Google Scholar
  463. Kallenberg, L.C.M. (1983). Linear programming and finite Markovian control problems. Mathematical Centre Tracts, 148.Google Scholar
  464. Kalpakam, S. & M.J. Shahul Hameed (1983). Analysis of a modular warm standby redundant system. Cah.Cent.Etud.Rech.Oper., 25, 49–63.zbMATHGoogle Scholar
  465. Kairo, A.H. & A. Rangan (1979). Stochastic models for stock price fluctuations. Cah.Cent.Etud.Rech.Oper., 21, 331–336.Google Scholar
  466. Kambo, N.S. (see H.S. Bhalaik).Google Scholar
  467. Kan, V.E. & L.Ya. Peses (1975). Reliability of systems with accumulation of failures under prevention. Avtomatika vycislit.tehn., Riga, 5, 43–46.MathSciNetGoogle Scholar
  468. Kander, Z. (1978). Inspection policies for deteriorating equipment characterized by N quality levels. Naval Res.Logist.Q., 25, 243–255.zbMATHCrossRefGoogle Scholar
  469. Kanderhag, L. (1978). Eigenvalue approach for computing the reliability of Markov systems. IEEE Trans.Reliab.R-27, 337-340.Google Scholar
  470. Kao, E.P.C. (1975). A discrete time inventory model with arbitrary interval and quantity distributions of demand. Operations Res., 23, 1131–1142.zbMATHCrossRefGoogle Scholar
  471. Kapil, D.V.S. & S.M.Sinha (1981). Repair limit suspension policies for a 2-unit redundant system with 2-phase repairs. IEEE Trans. Reliab.R-30, 90.Google Scholar
  472. Kaplan, M. (1980). A two-fold tandem net with deterministic links and source interference. Oper.Res., 28, 512–526.MathSciNetzbMATHCrossRefGoogle Scholar
  473. Kaplan, E.I. & D.S. Silvestrov (1979). The theorems of the invariance principle type for semi-Markov processes with an arbitrary set of states. Analytical Methods Prob.Th., Collect.Sci.Works, Kiev, 121-125 (Russian).Google Scholar
  474. Kaplan, E.I. & D.S. Silvestrov (1980). Theorems of the invariance principle type for recurrent semi-Markov processes with arbitrary phase space. Theory Probab.Appl., 24, 536–547.zbMATHCrossRefGoogle Scholar
  475. Kapoor, K.R. & P.K. Kapur (1978). Stochastic behaviour of some 2-unit redundant systems. IEEE Trans.Reliab., R-27, 382–385.CrossRefGoogle Scholar
  476. Kapoor, K.R. & P.K. Kapur (1978). Analysis of 2-unit standby redundant repairable systems. IEEE Trans.Reliab., R-27, 385–388.CrossRefGoogle Scholar
  477. Kapur, P.K. (see S. Biswas; & K.R. Kapoor).Google Scholar
  478. Karapenev, H.K. (1978). Reliability estimate for a redundant system with renewal and delayed failure exposure. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 107-112 (Russian).Google Scholar
  479. Karlin, S. & U. Liberman (1983). Measuring interference in the chiasma renewal formation process. Adv.Appl.Probab., 15, 471–487.zbMATHCrossRefGoogle Scholar
  480. Karmeshu (see N.K. Jaiswal).Google Scholar
  481. Karr, A.F. (1976). Two extreme value processes arising in hydrology. J.Appl.Probab., 13, 190–194.MathSciNetzbMATHCrossRefGoogle Scholar
  482. Karr, A.F. (1982). A partially observed Poisson process. Stochastic Processes Appl., 12, 249–269.MathSciNetzbMATHCrossRefGoogle Scholar
  483. Kashtanov, V.A. (see G.I. Ivchenko).Google Scholar
  484. Kaufman, L. (1982). Solving large sparse linear system arising in queueing problems. Lect.Notes Math., 968, 352–360.MathSciNetCrossRefGoogle Scholar
  485. Kaufmann, A. (see R. Cruon).Google Scholar
  486. Kawai, H. & H. Mine (1976). Marginal checking of a Markovian degradation unit when checking interval is probabilistic. J.Operations Res.Soc.Japan, 19, 158–173.MathSciNetzbMATHGoogle Scholar
  487. Kawai, H. & H. Mine (1982). An optimal inspection and maintenance policy of a deteriorating system. J.Operations Res.Soc.Japan, 1-15.Google Scholar
  488. Kawashima, T. (1979). Turnaround time equations in queueing networks. J.Operations Res.Soc.Japan, 21, 477–485.MathSciNetzbMATHGoogle Scholar
  489. Kazantsev, E.N. & M.Kh. Prilutskij (1978). A class of controlled Markov chains. Russ.math.Surv., 33, 235–236.zbMATHCrossRefGoogle Scholar
  490. Keener, R.W. (1982). Renewal theory for Markov chains on the real line. Ann.Probab., 10, 942–954.MathSciNetzbMATHCrossRefGoogle Scholar
  491. Keilson, J. (see S.C. Graves).Google Scholar
  492. Keilson, J. (1974). Sojourn times, exit times and jitter in multi-variate Markov processes. Adv.Appl.Probab., 6, 747–756.MathSciNetzbMATHCrossRefGoogle Scholar
  493. Kekre, H.B., R.D. Kumar & H.M. Srivastava (1977). A study of varying efficiency multiserver queue models. Int.Symp.Oper.Theory Netw. Syst., Vol.11, Lubbock, 156-160.Google Scholar
  494. Kelbert, M.J. (1980). The existence of the limiting distributions in some networks of communication of messages. Adv.Probab.Relat. Top., Vol. 6, 397–421.MathSciNetGoogle Scholar
  495. Kelbert, M.J. & Yu.M. Sukhov (1980). One class of star-shaped communication networks with packet switching. Probl.Inf.Transm., 15, 286–300.Google Scholar
  496. Kelly, F.P. (1976). Networks of queues. Adv.Appl.Probab., 8, 416–432.zbMATHCrossRefGoogle Scholar
  497. Kelly, F.P. (1979). Reversibility and stochastic networks. John Wiley & Sons.Google Scholar
  498. Kelly, F.P. (1982). The throughput of a series of buffers. Adv.Appl. Probab., 14, 633–653.zbMATHCrossRefGoogle Scholar
  499. Kempe, F. (1976). Extrapolation and identification of a component of a linear Markov process. Automat.Remote Control, 37, 501–511.MathSciNetzbMATHGoogle Scholar
  500. Kertz, R.P. (1978). Random evolutions with underlying semi-Markov processes. Publ.Res.Inst.Math.Sci., 14, 589–614.MathSciNetzbMATHCrossRefGoogle Scholar
  501. Khan, M.S.H. (see G.C. Jain).Google Scholar
  502. Kim Kwang, W. & C.C. White III (1980). Solution procedures for vector criterion Markov decision processes. Large Scale Syst., 1, 129–140.zbMATHGoogle Scholar
  503. Kinugasa, M. & S. Osaki (1982). Performance-related reliability evaluation of a three-unit hybrid redundant system. Int.J.Syst. Sci., 13, 1–19.zbMATHCrossRefGoogle Scholar
  504. Kirchheim, A. (1974). Prophylaktische Reparaturtermine eines technologischen Systems. VI. Intern.Kongr.Anwend.Math.Ingenieurwiss., Weimar, 1972, 178–181.Google Scholar
  505. Kirchheim A. (1980). Ein spezielles Erneuerungsmodell als Semi-Markov-Entscheidungsprozess. Elektron.Informationsverarbeitung Kybernetik, 16, 569–575.MathSciNetzbMATHGoogle Scholar
  506. Kiryan, N.L. & Ju.A. Zak (1976). Algorithms for analysing random process transition regimes in the process flow diagram. Avtomatika, Kiev, 58-70 (Ukrainian).Google Scholar
  507. Kistauri, Eh.I. (see A.H. Giorgadze).Google Scholar
  508. Kistauri, Eh.I. (1978). Successive decomposition of semi-Markov processes with a discrete set of states. Soobscenija Akad.Nauk Gruzin.SSR 91, 577–580 (Russian).MathSciNetzbMATHGoogle Scholar
  509. Kistauri, Eh.I. (1980). Application of a decomposition in order to calculate the time in which discrete semi-Markov processes are in a fixed subset of states. Soobscenija Akad.Nauk Gruzin.SSR 99, 69–72 (Russian).zbMATHGoogle Scholar
  510. Kistner, K.P. & R. Subramanian (1978). Regenerative Eigenschaften von Modellen der Zuverlaessigkeitstheorie. Oper.Res.Verf., 2nd Symp.Teil 2, Aachen 1977, 713–725.MathSciNetGoogle Scholar
  511. Kistner, K.P., R. Subramanian & K.S. Venkatakrishnan (1976). Reliability of a repairable system with standby failure. Operations Res., 24, 169–176.MathSciNetzbMATHCrossRefGoogle Scholar
  512. Kitaev, M.Yu. (1982). The existence of optimal homogeneous strategies of controllable semicontinuous semi-Markov models with respect to the average cost criterion. Theory Probab.Appl., 26, 614–616.zbMATHCrossRefGoogle Scholar
  513. Klega, V. (1981). The mean period of random fluctuations at a linear system output. Acta Tech.CSAV, 26, 1–10.zbMATHGoogle Scholar
  514. Klein, C.F. (see W.A. Gruver).Google Scholar
  515. Klein Haneveld, W.K. (1980). On the behaviour of the optimal value operator of dynamic programming. Math.Oper.Res., 5, 308–320.MathSciNetzbMATHCrossRefGoogle Scholar
  516. Klimov, G.P., R. Nagapetjan & S.N. Smirnov (1982). Regenerative processes with Markov-dependent cycles and their applications. Math.Operationsforsch.Stat., Ser.Optimization, 13, 287–297.MathSciNetzbMATHCrossRefGoogle Scholar
  517. Kobrin, F.E. & R.G. Potter (1982). Effects of cyclic spouse separation on conception times. Math.Biosci., 59, 207–223.zbMATHCrossRefGoogle Scholar
  518. Koenig, D. (see U. Arndt, V.B. Gnedenko & U. Jansen).Google Scholar
  519. Koenig, D. (1974). Anwendung von stochastischen Prozessen mit Geschwindigkeiten zur Untersuchung von Bedienungs-und Zuverlaessigkeitsmodellen. Wiss.Z.Tech.n.Hoch.Otto von Guericke, Magdeburg, 18, 363–368.zbMATHGoogle Scholar
  520. Koenig, D. & D. Stoyan (1981). Methoden der Bedienungstheorie. Moskva: “Radio i Svyaz” (Russian).Google Scholar
  521. Koevoets, D. (see Y.M.I. Dirickx).Google Scholar
  522. Kogan, Ja.A. (1977). Analytic investigation of page replacement algorithms for Markov and semi-Markov program behavior models. Automat.Remote Control, 38, 109–111 (Russian).zbMATHGoogle Scholar
  523. Kohlas, J. (1982). Stochastic methods of operations research. Cambridge University Press.Google Scholar
  524. Kokotushkin, V.A. (see G.P. Basharin).Google Scholar
  525. Kolonko, M. (1980). Dynamische Optimierung unter Unsicherheit in einem Semi-Markoff-Modell mit abzaehlbarem Zustandsraum. Dissertation, Rhein.Fr.W.Universitaet, Bonn.Google Scholar
  526. Kolonko, M. (1982). The average-optimal adaptive control of a Markov renewal model in presence of an unknown parameter. Math. Operationsforsch.Stat., Ser.Optimization, 13, 567–591.MathSciNetzbMATHCrossRefGoogle Scholar
  527. Kolonko, M. (1982). Strongly consistent estimation in a controlled Markov renewal model. J.Appl.Probab., 19, 532–545.MathSciNetzbMATHCrossRefGoogle Scholar
  528. Kolonko, M. & M. Schael (1980). Optimal control of semi-Markov chains under uncertainty with applications to queueing models. Proc. Oper.Res.Jahrestag.DG0R, Regensburg 1979, 430–435.Google Scholar
  529. Kondratiev, A.S. (1976). Investigation of the asymptotic form of the mean failure-free operating time. Kibernetika, Kiev, 140-142 Russian).Google Scholar
  530. Kondratiev, A.S. & G.G. Menshikov (1978). Specification of asymptotic expressions for the mean time of failure-free operation of non-recoverable redundant systems. Kibernetika, Kiev, 142-143 (Russian).Google Scholar
  531. Konev, V.V. (1974). On the optimal switching of spare parts. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 77-83 (Russian).Google Scholar
  532. Konev, V.V. (1975). On the optimal switching for spare parts. Izvestija Akad.Nauk SSSR, tehn.Kivernet., 109-117 (Russian).Google Scholar
  533. Konovalyuk, V.S. (1981). Asymptotic analysis of a two-channel system with N reserve devices. Anal.Meth.Prob.Theory, Collect.Sci. Works, Kiev, 83-96 (Russian).Google Scholar
  534. Konovalyuk, V.S. (1982). Two-channel system with dependent failures. Cybernetics, 17, 808–815.Google Scholar
  535. Konovalyuk, V.S. (1982). Superposition of two dependent Markov renewal processes. Ukr.Math.J., 34, 140–144.MathSciNetzbMATHCrossRefGoogle Scholar
  536. Kopocinska, I. (1980). On system reliability under random load of elements. Zastosow.Mat., 17, 5–14.MathSciNetzbMATHGoogle Scholar
  537. Kopocinski, B. (see I. Kopocinska).Google Scholar
  538. Korn, I. (1974). A stochastic process generated by a network with a randomly alternating switch. J.Franklin Inst., 297, 153–167.MathSciNetzbMATHCrossRefGoogle Scholar
  539. Korolyuk, V.S. (see E. Arjas, S.M. Brodi & D.V. Gusak).Google Scholar
  540. Korolyuk, V.S. (1977). Semi-Markov models of complex stochastic systems. 2nd Int.Summer Sch.Prob.Theory Math.Stat., Varna, 113-185.Google Scholar
  541. Korolyuk, V.S. (1982). Superposition of Markov renewal processes. Cybernetics, 17, 556–560.CrossRefGoogle Scholar
  542. Korolyuk, V.S. & E.P. Lebedintseva (1978). Limit theorem for sojourn time of a semi-Markov process in a subset of states. Ukr.Math. J., 30, 513–516.MathSciNetzbMATHCrossRefGoogle Scholar
  543. Korolyuk, V.S. & A. Tadzhiev (1977). Asymptotic expansion for the life time distribution of the absorbing semi-Markov process. Dopovidi Akad.Nauk.Ukrain.SSR, Ser.A, 1065-1068(Ukrainian).Google Scholar
  544. Korolyuk, V.S. & A.F. Turbin (1976). Asymptotic enlarging of semi-Markov processes with an arbitrary state space. Proc.3rd Japan-USSR Symp.Prob.Theory Taschkent 1975, Lecture Notes Math., 550, 297–315.MathSciNetCrossRefGoogle Scholar
  545. Korolyuk, V.S. & A.F. Turbin (1976) Semi-Markov processes and their applications. Kiev: Izdatelstvo “Naukova Dumka” (Russian).Google Scholar
  546. Korolyuk, V.S. & A.F. Turbin (1978). Mathematical principles for phase extension of complex systems. Kiev: Izdatelstvo “Naukova Dumka” (Russian).Google Scholar
  547. Korolyuk, V.S. & A.F. Turbin (1982). Markov renewal processes in problems of systems reliability. Kiev: Izdatelstvo “Naukova Dumka” (Russian).Google Scholar
  548. Korolyuk, V.S., A.A. Tomusyak & A.F. Turbin (1979). The time of duration of a semi-Markov process in a splittable set of states. Anal.Meth.Probab.Theory, Collect.Sci.Works, Kiev, 69-79 (Russian).Google Scholar
  549. Kortz, S. (see I.R. Goodman).Google Scholar
  550. Kotzurek, M. (see U. Jansen).Google Scholar
  551. Kouvatsos, D.D. (see M.A.El-Affendi).Google Scholar
  552. Kovalenko, I.N. (see G.I. Ivchenko).Google Scholar
  553. Kovalenko, I.N. (1981). Asymptotic state enlargement for random processes. Cybernetics, 16, 876–886 (Russian).CrossRefGoogle Scholar
  554. Kovalenko, I.N. (1980). Analysis of rare events in estimating the efficiency and reliability of systems. Moskva: “Sovetskoe Radio”.Google Scholar
  555. Kovalenko, I.N. (1982). Calculation of probabilistic characteristics of systems. Kiev: “Teknika” (Russian).Google Scholar
  556. Kovalenko, I.N. & N.Yu. Kuznetsov (1981). Renewal process and rare events limit theorems for essentially multidimensional queueing processes. Math.Operationsforsch.Stat., 12, 211–224.MathSciNetzbMATHGoogle Scholar
  557. Kozlov, V.V. (1978). A limit theorem for a queueing system. Theory Probab.Appl., 23, 182–187.zbMATHCrossRefGoogle Scholar
  558. Kozniewska, I. & M. Wlodarczyk (1978). Renewal, reliability and service models. Warszawa: Pantswowe Wydawnictwo Naukowe (Polish).Google Scholar
  559. Kredentsjer, B.P. (1974). On the optimal distribution of spare parts according to their availability. Avtomtika vycislit.Tehn., Riga, 31-32.Google Scholar
  560. Krishna, J.V. (see N.K. Jaiswal).Google Scholar
  561. Kshirsagar, A.M. (see M. Becker).Google Scholar
  562. Kshirsagar, A.M. & R. Rao Chennupati (1978). A semi-Markovian model for predator-prey interactions. Biometrics, 34, 611–619.zbMATHCrossRefGoogle Scholar
  563. Ruczura, A. (see D. Bajaj).Google Scholar
  564. Kueenle, Ch. & H.U. Kueenle (1977). Durchschnittsoptimale Strategien in Markovschen Entscheidungsmodellen bei unbeschraenkten Kosten. Math.Operationsforsch.Stat., Optimization, 8, 549-564. Kueenle, H.U. (see Ch. Kueenle).Google Scholar
  565. Kuehn, P.J. (1979). Approximate analysis of general queueing networks by decomposition. IEEE Trans.Commun., COM-27, 113-126.Google Scholar
  566. Kuhta, T.K. (1977). Analysis of the queueing system GI/M/m by the method of the embedded semi-Markov processes. Kibernetika, Kiev, 132-134.Google Scholar
  567. Kulba, V.V., A.G. Mamikonov & V.P. Pelikhov (1981). Determination of the probabilistic characteristics of feedback control for Markov and semi-Markov error processes. Autom.Remote Control, 41, 1375–1379.Google Scholar
  568. Kumar, A. (see M. Agarwal).Google Scholar
  569. Kumar, A. (1977). Steady-state profit in several 1-out-of-2: G systems. IEEE Trans.Reliab. R-26, 366–369.CrossRefGoogle Scholar
  570. Kumar, A. (1977). Profit in a 2-unit standby system with a general cost structure. Defence Sci.J., New Delhi, 27, 135–140.zbMATHGoogle Scholar
  571. Kumar, A. & R. Lal (1979). Stochastic behaviour of a two-unit standby system with contact failure and intermittently available repair facility. Internat.J.Systems Sci., 10, 589–603.zbMATHCrossRefGoogle Scholar
  572. Kumar, A. & R. Lal (1978). Stochastic behaviour of a standby redundant system. IEEE Trans.Reliab., R-27, 169–170.CrossRefGoogle Scholar
  573. Kumar, R.D. (see H.B. Kekre).Google Scholar
  574. Kumar, S. & M.F. Neuts (1982). Algorithmic solution of some queues with overflows. Manage.Sci., 28, 925–935.MathSciNetzbMATHCrossRefGoogle Scholar
  575. Kunderova, P. (1979). On a mean reward of a Markov replacement process with only one isolated class of recurrent states. Acta Univ. Palacki.Olomuc., Fac.Rerum Nat., 61, Math., 18, 145-155.Google Scholar
  576. Kunderova, P. (1980). On a mean reward from a common Markov replacement process. Acta Univ.Palacki.Olomuc., Fac.Rerum Nat., 65, Math., 18, 39–50.MathSciNetGoogle Scholar
  577. Kunderova, P. (1981). On limit properties of the reward from a Markov replacement process. Acta Univ.Palacki.Olomuc., Fac. Rerum Nat., 69, Math., 20, 133–146.MathSciNetzbMATHGoogle Scholar
  578. Kupka, J. (1983). Two limit theorems for ergodically generated stochastic processes. Math.Proc.Camb.Philos.Soc., 93, 519–536.MathSciNetzbMATHCrossRefGoogle Scholar
  579. Kurako, E.K. (see E.K. Degtyarev).Google Scholar
  580. Kurasov, V.G. (see L.D. Chumatov).Google Scholar
  581. Kuznetsov, N.Ya. (see I.N. Kovalenko).Google Scholar
  582. Kuznetsov, N.Ya. (1979). On approximation of the probability of redundant system failure by the probability of the monotonous failure. Dopovidi Akad.Nauk Ukrain.RSR, Ser.A, 205-255 (Ukrainian).Google Scholar
  583. Kuznetsov, N.Ya. (1981). Semi-Markov model for loaded duplication. Cybernetics, 16, 558–567.CrossRefGoogle Scholar
  584. Kuznetsov, V.N., A.F. Turbin & M.D. Zbyrko (1980). Semi-Markov model for analysing reliability of system with restorable protection. Autom.Remote Control, 41, 879–887.zbMATHGoogle Scholar
  585. Lacny, J. (1976). An analysis of buffering techniques in nodes of teleprocessing nets. Arch.Automat.Telemach., 21, 89–104.zbMATHGoogle Scholar
  586. Lagakos, S.W. (see G.E. Dinse).Google Scholar
  587. Lagakos, S.W., C.J. Sommer & M. Zelen (1978). Semi-Markov models for partially censored data. Biometrika, 65, 311–317.MathSciNetzbMATHCrossRefGoogle Scholar
  588. Lal, R. (see A. Kumar).Google Scholar
  589. Landman, U. & M.F. Shlesinger (1980). Solutions of physical stochastic processes via mappings onto ideal and defective random walk lattices. Proc.Conf.Applied Stoch.Proc, Athens/USA, 151-246.Google Scholar
  590. Landrault, Ch. (see A. Costes).Google Scholar
  591. Landrault, Ch. (1978). A unified availability analysis method for systems containing design errors. IEEE Trans.Reliab., R-26, 331–334.CrossRefGoogle Scholar
  592. Langen, H.J. (1980). On weak approximation of Markov decision models. Methods Oper.Res., 37, 383–389.zbMATHGoogle Scholar
  593. Lansky, P. (1978). On a modification of Renyi’s traffic models. Apl.Mat., 23, 39–51.MathSciNetzbMATHGoogle Scholar
  594. Laprie, J.C. (see A. Costes).Google Scholar
  595. Largay, B.J., J.A. Largay III & D. Young (1982). A new computational approach to cost variance investigation problems. J.Inf.Optimization Sci., 3, 1–16.zbMATHCrossRefGoogle Scholar
  596. Largay, J.A. III (see B.J. Largay).Google Scholar
  597. Larsen, R.L. (see A.K. Agrawala).Google Scholar
  598. Latouche, G. (see J.P. Colard).Google Scholar
  599. Latouche, G. (1982). A phase type semi-Markov point process. SIAM J.Algebraic Discrete Methods, 3, 77–90, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  600. Latyshev, (1982). Reliability of systems with random streams of multistage customers. Autorn.Remote Control, 43, 229–237.zbMATHGoogle Scholar
  601. Lauenstein, G. & K. Renger (1981). Haeherungsweise Ermittlung der Erneuerungsfunktion und Entwicklung von Diagrammen zur Bestimmung optimaler starr periodischer Instandhaltungszylklen bei Weibull-verteilten Laufzeiten. Wiss.Z.Tech.Hochsch.Carl Schorlemmer Leuna-Merseburg, 23, 529–545.zbMATHGoogle Scholar
  602. Lauriere, J.L. (see R. Faure).Google Scholar
  603. Lave, R.E. & J.K. Satia (1973). Markovian decision processes with probabilistic observation of states. Management Sci., Theory, 20, 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  604. Lavenberg, S.S. & M. Reiser (1980). Mean-value analysis of closed multichain queueing networks. J.Assoc.Comput.Math., 27, 313–332.MathSciNetzbMATHCrossRefGoogle Scholar
  605. Lavenberg, S.S. & M. Reiser (1980). Stationary state probabilities at arrival instants for closed queueing networks with multiple types of customers. J.Appl.Probab., 17, 1048–1061.MathSciNetzbMATHCrossRefGoogle Scholar
  606. Lavenberg, S.S. & M. Reiser (1981). Corrigendum to “Mean-value analysis of closed multichain queueing networks”. J.Assoc.Comput. Mach., 28, 629.MathSciNetzbMATHCrossRefGoogle Scholar
  607. Lavenberg, S.S. & C.H. Sauer (1977). Sequential stopping rules for the regenerative method of simulation. IBM J.Res.Develop., 21, 545–558.MathSciNetzbMATHCrossRefGoogle Scholar
  608. Lavenberg, S.S., T.L. Moeller & P.D. Welch (1982). Statistical results on control variables with application to queueing network simulation. Oper.Res., 30, 182–202.zbMATHCrossRefGoogle Scholar
  609. Lazar, A.A. (1983). Optimal flow control of a class of queueing networks in equilibrium. IEEE Trans.Autorn.Control AC-28, 10001-1007.Google Scholar
  610. Leavenworth, R.S. & R.L. Scheaffer (1979). Design of a process control scheme for defects per 100 units based on AOQL. Naval Res. Logist., Q, 26, 463–485.zbMATHCrossRefGoogle Scholar
  611. Lebedintseva, E.M. (see V.S. Korolyuk).Google Scholar
  612. Lemaire, B. (1975). Etat actuel et perspectives de l’utilisation des modèles markoviens pour l’étude du comportement des consommateurs. Sci.Humaines, 50, 51–80.MathSciNetGoogle Scholar
  613. Lemaire, B. (1978). Théorème de conservation des clients dans les files d’attente. RAIRO, Rech.Opérat., 12, 395–399.MathSciNetzbMATHGoogle Scholar
  614. Lemoine, A.J. (see J.M. Harrison).Google Scholar
  615. Lemoine, A.J. (1977). Networks of queues — a survey of equilibrium analysis. Manage.Sci., 24, 464–481.MathSciNetzbMATHCrossRefGoogle Scholar
  616. Lemoine, A.J. (1978). Networks of queues — a survey of weak convergence results. Manage.Sci., 24, 1175–1193.MathSciNetzbMATHCrossRefGoogle Scholar
  617. Lennox, W. & B. Sahay (1974). Moments of the first passage-time for narrow-band process. J.Sound Vibration, 32, 449–458.zbMATHCrossRefGoogle Scholar
  618. Le Ny, L.M. (1980). Etude analytique de réseaux de files d’attente multiclasses à routages variables. RAIRO, Rech.Opér., 14, 331–347.zbMATHGoogle Scholar
  619. Lesanovsky, A. (1982). The comparison of two-unit standby redundant system with two and three states of units. Proc.2nd Pannonian Sympt.Probability Stat.Inference, Bad Tatzmannsdorf, Austria, 239-250.Google Scholar
  620. Létac, G. (1978). Chaînes colorées: trois extensions d’une formule de P.Nelson. J.Appl.Probab., 15, 321–339.zbMATHCrossRefGoogle Scholar
  621. Lev, G.S. (1980) On the distribution of the absorption time for a semi-Markov multiplication process. Theory Probab.Appl., 24 876–882.zbMATHCrossRefGoogle Scholar
  622. Leve (de), D. (see A. Federgruen).Google Scholar
  623. Levine, W.S. (see J.S. Baras).Google Scholar
  624. Levinskij, B.G. & A.F. Turbin (1981). A method for the asymptotic analysis of semi-Markov processes in the scheme of phase enlargement. Analyt.Meth.Probab.Theory, Collect.Sci.Works, Kiev, 133-147.Google Scholar
  625. Liberman, U. (see S. Karlin).Google Scholar
  626. Lidskij, Eh.A. (1981). Reliability as the stability of the output characteristics of automation apparatus. Cybernetics, 16, 450–457.CrossRefGoogle Scholar
  627. Liefvoort (van de), A. (see J.L. Carroll).Google Scholar
  628. Lin, T.L. (see J.S. Baras).Google Scholar
  629. Linton, D. & P. Purdue (1979). An M/G/s queue with m customer types subject to periodic clearing. Opsearch, 16, 80–87.MathSciNetzbMATHGoogle Scholar
  630. Lippman, S.A. (1976). Countable-state, continuous-time dynamic programming with structure. Operations Res., 24, 477–490.MathSciNetzbMATHCrossRefGoogle Scholar
  631. Lipsky, L. (see J.L. Carroll).Google Scholar
  632. Litvinov, A.L. & V.A. Popov (1978). Probabilistic model of buffer store for a control computer complex with group choice. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 91-95.Google Scholar
  633. Liu, M.S. & J.S. Yao (1977). The capacity of a traffic flow on a Tform traffic intersection. Tamkang J.Math., 8, 135–143.MathSciNetzbMATHGoogle Scholar
  634. Lloyd, E.H. (1977). Reservoirs with seasonally varying Markovian inflows and their first passage times. Int.Institute Appl. Systems Analysis, Laxenburg, RR-77-4.Google Scholar
  635. Lopatko, V.B. (1977). Communication between processes via ports with enclosed buffers. Mosc.Univ.Comput.Math.Cybern., 75-79.Google Scholar
  636. Lucas, G. (see B. Anders).Google Scholar
  637. Luss, H. (1976). Maintenance policies when deterioration can be observed by inspection. Operations Res., 24, 359–366.MathSciNetzbMATHCrossRefGoogle Scholar
  638. Magazine, M.J. (1983). Optimality of intuitive checkpointing policies. Inf.Process.Lett., 17, 63–66.MathSciNetCrossRefGoogle Scholar
  639. Maisonneuve, B. (1975). Entrance-exit results for semi-regenerative processes. Z.Wahrscheinlichkeitstheorie Verw.Geb., 32, 81–94.MathSciNetzbMATHCrossRefGoogle Scholar
  640. Malshakov, V.D., M.B. Tamarkin & A.R. Timoshenko (1980). Model of computer system on the level of intervals of resource utilization. Autom.Control.Comut.Sci., 14, 15–19.Google Scholar
  641. Mamikonov, A.G. (see V.V. Kulba).Google Scholar
  642. Manca, R. (see M. Carravetta).Google Scholar
  643. Marcus, A.H. (see A. Becher).Google Scholar
  644. Marcus, A.H. (1980). Erratum to: Power laws in compartmental analysis. Part I: A unified stochastic model. Math.Biosci., 48, 155.Google Scholar
  645. Marie, R. (1978). Quelques résultats relatifs aux réseaux de files d’attente. 1er Colloq.Math.Appl., AFCET-SMF, Palaiseau 1978, I, 253-263.Google Scholar
  646. Ng Stephen, F.W. & J.W. Mark (1978). Satellite packet switching with global assignments and batch Poisson arrivals. IEEE Trans. Comput., C-27, 1216–1221.CrossRefGoogle Scholar
  647. Marshall, K.T. (see W.J. Hayne).Google Scholar
  648. Martynenko, O.N. & A.S. Serdakov (1982). Optimizing the checking depth in electronic equipment. Autom.Remote Control, 42, 1040–1043.Google Scholar
  649. Masol, V.I. (1977). On the asymptotic behaviour of the time of arrival at a high level by a regenerative stable process with independent increments. Theory Probab.Math.Stat., 9, 139–144.zbMATHGoogle Scholar
  650. Massey, W.A. (1984). Open networks of queues: their algebraic structure and estimating their transient behaviour. Adv.Appl. Probab., 16, 176–201.MathSciNetzbMATHCrossRefGoogle Scholar
  651. Mastebroeck, H.A.K. (see G. Gestri).Google Scholar
  652. Mazo, J.E. (1982). Some extremal Markov chains. Bell Syst.Tech.J., 61, 2065–2080.MathSciNetzbMATHGoogle Scholar
  653. McClean, S.I. (1978). Continuous-time stochastic models of a multi-grade population. J.Appl.Probab., 15, 26–37.MathSciNetzbMATHCrossRefGoogle Scholar
  654. McClean, S.I. (1980). A semi-Markov model for a multigraphe population with Poisson recruitment. J.Appl.Probab., 17, 846–852.MathSciNetzbMATHCrossRefGoogle Scholar
  655. McConalogue, D.J. (see L.A. Baxter).Google Scholar
  656. McDonald, D. (see K.B. Athreya).Google Scholar
  657. McDonald, D. (1977). Equilibrium measures for semi-Markov processes. Ann.of Probab., 5, 818–822.zbMATHCrossRefGoogle Scholar
  658. McDonald, D. (1978). On semi-Markov and semi-regenerative processes I. Z.Wahrscheinlichkeitstheorie verw.Gebiete, 42, 261–277.zbMATHCrossRefGoogle Scholar
  659. McDonald, D. (1978). On semi-Markov and semi-regenerative processes II. Ann.of Probab., 6, 995–1014.zbMATHCrossRefGoogle Scholar
  660. McKenna, J. & D. Mitra (1982). Integral representations and asymptotic expansions for closed Markovian queueing networks: normal usage. Bell Syst.Tech.J., 61, 661–683.MathSciNetzbMATHGoogle Scholar
  661. McKenna, J., D. Mitra & K.G. Ramakrishnan (1981). A class of closed Markovian queueing networks: integral representations, asymptotic expansions and generalizations. Bell Syst.Techn.J., 60, 599–641.MathSciNetzbMATHGoogle Scholar
  662. McNickle, D.C. (see R.L. Disney).Google Scholar
  663. Meditch, J.S. (1978). A minimum principle/queueing theory approach to routing in message-switched networks. Comput.Electr.Eng., 5, 305–310.zbMATHCrossRefGoogle Scholar
  664. Mehlmann, A. (1979). Semi-Markovian manpower models in continuous time. J.Appl.Probab., 16, 416–422.MathSciNetzbMATHCrossRefGoogle Scholar
  665. Mehta, Y.K. (see S. Biswas).Google Scholar
  666. Meilijson, I. & G. Weiss (1977). Multiple feedback at a single-server station. Stochastic Processes Appl., 5, 195–205.MathSciNetzbMATHCrossRefGoogle Scholar
  667. Meister, B. (1976). Models in resource allocation — trees of queues. Lecture Notes Econ.Math.Syst., 117, 215–223.CrossRefGoogle Scholar
  668. Meketon, M.S. (see Ph. Heidelberger).Google Scholar
  669. Melamed, B. (see F.J. Beutler).Google Scholar
  670. Melamed, B. (1979). Characterizations of Poisson traffic streams in Jackson queueing networks. Adv.Appl.Probab., 11, 422–438.MathSciNetzbMATHCrossRefGoogle Scholar
  671. Melamed, B. (1982). On the reversibility of queueing networks. Stochastic Processes Appl., 13, 227.MathSciNetzbMATHCrossRefGoogle Scholar
  672. Melamed, B. (1982). On Markov jump processes imbedded at jump epochs and their queueing-theoretic applications. Math.Oper.Res., 7, 111–128.MathSciNetzbMATHCrossRefGoogle Scholar
  673. Mello, J.M.C. (see N.A.J. Hastings).Google Scholar
  674. Menselson, H. & U. Yechiali (1981). Controlling the GI/M/1 queue by conditional acceptance of customers. Eur.J.Oper.Res., 7, 77–85.CrossRefGoogle Scholar
  675. Menipaz, E. (1979). Cost optimization of some stochastic maintenance policies. IEEE Trans.Reliab., R-28, 133–136.CrossRefGoogle Scholar
  676. Mensikov, G.G. (see A.S. Kondratiev).Google Scholar
  677. Mergenthaler, W. (1982). The total repair cost in a defective, coherent binary system. Cybern.Syst., 13, 219–243.MathSciNetzbMATHCrossRefGoogle Scholar
  678. Michikazu, K. (1978). Some applications of reliability analysis of standby redundant systems with repair. J.Operations Res.Soc. Japan, 21, 146–169.zbMATHGoogle Scholar
  679. Mihoc, G. & S.P. Niculescu (1976). On a class of stochastic processes. An.Univ.Craiova, Ser.Mat.Fiz.Chim., 4, 7–10.MathSciNetzbMATHGoogle Scholar
  680. Mikadze, I.S. (1978). On a technique to determine operational readyness. Soobshch.Akad.Nauk Gruzin.SSR, 92, 417–420.MathSciNetzbMATHGoogle Scholar
  681. Mileshina, R.I. (1977). Limit theorems for a controlled random walk. Theory Probab.Math.Stat., 13, 125–140.zbMATHGoogle Scholar
  682. Miller, D.R. (1979). Almost sure comparisons of renewal processes and Poisson processes, with applications to reliability theory. Math.Oper.Res., 4, 406–413.MathSciNetzbMATHCrossRefGoogle Scholar
  683. Mine, H. (see H. Kawai).Google Scholar
  684. Mine, H. & S. Osaki (1977). Markovian decision processes. Moskva: “Nauka” (Russian).Google Scholar
  685. Mirabile, M.P. (see E. Hannan).Google Scholar
  686. Mironov, M.A. & V.I. Tikhonov (1977). Markov processes. Moskva: “Sovetskoe Radio” (Russian).Google Scholar
  687. Misra, K.B. & J. Sharma (1974). Reliability optimization of a series system with active and standby redundancy. Internat.J.Systems Sci., 5, 1131–1142.zbMATHCrossRefGoogle Scholar
  688. Mitra, D. (see J. Mckenna).Google Scholar
  689. Mitra, D. & J.A. Morrison (1983). Asymptotic explansions of moments of the waiting time in closed and open processor-sharing systems with multiple job classes. Adv.Appl.Probab., 15, 813–839.MathSciNetzbMATHCrossRefGoogle Scholar
  690. Mitra, D. & K.G. Ramakrishnan (1982). An overview of PANACEA, a software package for analysing Markovian queueing networks. Bell Syst.Tech.J., 61, 2849–2872.zbMATHGoogle Scholar
  691. Mitrani, I. (see E. Coffman & E. Gelenbe).Google Scholar
  692. Mode, Ch.J. (1976). On the calculation of the probability of current family-planning status in a cohort of women. Math.Biosciences, 31, 105–120.zbMATHCrossRefGoogle Scholar
  693. Mode, Ch.I. & G. Pickens (1979). An analysis of postpartum contraceptive strategies — Policies for preventive medicine. Math.Biosciences, 47, 91–113.MathSciNetzbMATHCrossRefGoogle Scholar
  694. Mode, Ch.J. & M.G. Soyka (1980). Linking semi-Markov processes in time series — An approach to longitudinal data analysis. Math.Biosciences, 51, 141–164.zbMATHCrossRefGoogle Scholar
  695. Moeller, T.L. (see S.S. Lavenberg).Google Scholar
  696. Mohanty, S.G. (see J.L. Jain).Google Scholar
  697. Molma, C. (see G.E. Grandori).Google Scholar
  698. Monahan, G.E. (1982). A survey of partially observable Markov decision processes: Theory, models and algorithms. Manage. Sci., 28, 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  699. Morais (de), P.R. (1979). A Markovian model for a continuous-time inventory systems. 3rd Nat.Symp.Probab.Stat., Sao Paulo, 160-164.Google Scholar
  700. Morey, R.C. (1975). Approximations for the consolidation of multi-echelon repair facilities. Naval Res.Logist.Q., 22, 455–460.zbMATHCrossRefGoogle Scholar
  701. Morang, R.W. (see J.S. Edwards).Google Scholar
  702. Mori, T.F. (1980). On the asymptotic network delay in a model of packet switching. Comput.Math.Appl., 7, 167–172.zbMATHCrossRefGoogle Scholar
  703. Morozov, E.V. (1983). Some results for processes with continuous time in the system GI/G/1 with losses from the queue. I. Izvestija Akad.Nauk BSSR, Ser.Fiz.-Mat.Nauk, 51-55 (Russian). Morrison, J.A. (see D. Mitra).Google Scholar
  704. Morton, T.E. (1974). Decision horizons in discrete time undiscounted Markov renewal programming. IEEE Trans.Systems Man Cybernetics SMC-4, 392-394.Google Scholar
  705. Motoori, M., T. Nakagawa, Y. Sawa & K. Yasui (1980). Reliability analysis of an inspection policy and its application to a computer system. J.Oper.Res.Soc.Japan, 23, 273–286.MathSciNetzbMATHGoogle Scholar
  706. Mountford, D. (1979). An inequality in p-functions. Ann.of Probab., 7, 184–185.MathSciNetzbMATHCrossRefGoogle Scholar
  707. Mueller, B. (1980). Zerlegungsorientierte, numerische Verfahren fuer Markovsche Rechensystemmodelle. (Dissertation). Abteilung Informatik der Universitaet Dortmund.Google Scholar
  708. Mukhitdinova, N.M. (1978). Reservation with marginal checking and renewal. Dokl.Akad.Nauk UzSSR 1978, 8-11 (Russian).Google Scholar
  709. Nadarajan, R. & M.F. Neuts (1982). A multiserver queue with thresholds for the acceptance of customers into service. Oper.Res., 30, 948–960.zbMATHCrossRefGoogle Scholar
  710. Nagapetjan, R. (see G.P. Klimov).Google Scholar
  711. Nagapetjan, R. (1981). Use of regenerative processes with Markov dependent regeneration cycles. Izvestija Akad.Nauk Mold.SSR, Ser.Fiz.-Tehn.Mat.Nauk, 14-21 (Russian).Google Scholar
  712. Nahmias, S. (1975). A sequential decision problem with partial information. Cah.Cent.Etud.Rech.Opér., 17, 53–64.MathSciNetzbMATHGoogle Scholar
  713. Naik, D.N. (1978). Steady state availability of a system with two types of failure. IAPQR Trans., 3, 27–33.zbMATHGoogle Scholar
  714. Naik, D.N. (1981). Estimating the parameters of a 2-out-of-3: F system. IEEE Trans.Reliab. R-30, 464-465.Google Scholar
  715. Nakagawa, T. (see A.L.Goel & M. Motoori).Google Scholar
  716. Nagakawa, T. & S. Osaki (1976). Analysis of a repairable system which operates at discrete times. IEEE Trans.Reliab.R-25, 110-112.Google Scholar
  717. Nakajima, S. & Y. Watanabe (1977). Optimal renewal interval of a part before failures — a definite part with constant renewal intervals. Rep.Fac.Eng., Kanagawa Univ., 15, 36-41 (Japanese).Google Scholar
  718. Nakamura, M. & S. Osaki (1984). Performance/reliability evaluation for multi-processor systems with computation demands. Int. J.Syst.Sci., 15, 95–105.zbMATHCrossRefGoogle Scholar
  719. Nance, R.E. (see U.N. Bhat).Google Scholar
  720. Naneva, T. (see I. Cvetanov).Google Scholar
  721. Nasirova, T.I. (see H.M. Ahmedova).Google Scholar
  722. Nasirova, T.I. (1978). On a model of the control of reserves. Teor. Sluchajnyck Protsessov 6, 107-119 (Russian).Google Scholar
  723. Nasirova, T.I. (1980). On an ergodic theorem for certain Markov processes with delaying barrier. Theory Probab.Math.Stat., 20, 105–112.zbMATHGoogle Scholar
  724. Nasirova, T.I. (1982). Distribution of a semi-Markov walk process with delay screen. Izvestija Akad.Nauk Az.SSR, Ser.Fiz.-Tehn. Mat.Nauk., 6, 116–119.MathSciNetGoogle Scholar
  725. Nasirova, T.I. & A.V. Skorohod (1981). On the asymptotic behaviour of processes in an inventory control model. Theory Probab.Math. Stat., 23, 137–142.Google Scholar
  726. Nasirova, T.I. & A.V. Skorohod (1982). Limit theorems for some classes of random processes related to semi-Markov random walks. Theory Probab.Math.Stat., 25, 137–151.zbMATHGoogle Scholar
  727. Naumov, V.A. (see G.P. Basharin).Google Scholar
  728. Nawrotzki, K. (see U. Jansen).Google Scholar
  729. Nawrotzki, K. (1982). Ergodic theorems for random processes with embedded homogeneous flow. Theory Probab.Appl., 26, 388–392.zbMATHCrossRefGoogle Scholar
  730. Nechaev, B.Ya. (see Ya.G. Genis).Google Scholar
  731. Neffke, H. (1979). Renewal reward processes with linear expectation functions. Oper.Res.Verfahren, 30, 98–110.MathSciNetzbMATHGoogle Scholar
  732. Neffke, H. (1982). Bewertete Erneuerungsprozesse. Mathematical Systems in Economics, Hanstein.Google Scholar
  733. Nesenbergs, M. (1979). A hybrid of Erlang B and C formulas and its applications. IEEE Trans.Commun.C0M-27, 59-68.Google Scholar
  734. Neumann, K. (see W. Fix).Google Scholar
  735. Neumann, K. (1979). Recent advances in temporal analysis of GERT networks. Z.Oper.Res., Ser.A, 23, 153–177.zbMATHGoogle Scholar
  736. Neumann, K. (1980) Dynamische Optimierung und optimale Steuerung in speziellen GERT-Netsplaenen. Wiss.Z.Tech.Hochsctu Leipz., 4, 349-355.Google Scholar
  737. Neumann, K. & U. Steinhardt (1979). GERT networks and the time-oriented evaluation of projects. Lecture Notes Econ.Math. Systems, 172.Google Scholar
  738. Neuts, M.F. (see S. Chakravarthy, S. Kumar & R. Nadarajan).Google Scholar
  739. Neuts, M.F. (1976). Moment formulas for the Markov renewal branching process. Adv.Appl.Probab., 8, 690–711.MathSciNetzbMATHCrossRefGoogle Scholar
  740. Neuts, M.F. (1977). Some explicit formulas for the staedy-state behaviour of the queue with semi-Markovian service time. Adv. Appl.Probab., 9, 141–157.MathSciNetzbMATHCrossRefGoogle Scholar
  741. Neuts, M.F. (1978). The second moments of the absorption times in the Markov renewal branching process. J.Appl.Probab., 15, 707–714.MathSciNetzbMATHCrossRefGoogle Scholar
  742. Neuts, M.F. (1978). Renewal processes of phase type. Naval.Res. Logist.Q., 25, 445–454.MathSciNetzbMATHCrossRefGoogle Scholar
  743. Ney, P.E. (see K.B. Athreya).Google Scholar
  744. Ng Stephen, F.W. (see J.W. Mark).Google Scholar
  745. Nicolai, W. (1979). Optimierung spezieller GERT-Netzplaene. Z.Angew. Math.Mech., 59/01, T108-T109.Google Scholar
  746. Nicolai, W. (1980). On the temporal analysis of special GERT-networks using a modified Markov renewal process. Z.Oper.Res., Ser.A, 24, 263–272.MathSciNetzbMATHGoogle Scholar
  747. Nicolai, W. (1982). Optimization of STEOR networks via Markov renewal programming. Z.Oper.Res., Ser.A, 26, 7–19.MathSciNetzbMATHGoogle Scholar
  748. Nicolis, J.S. & E.N. Protonotarios (1980). Modelling communication and control between hierarchical systems. Int.J.Syst.Sci., 11, 107–127.MathSciNetzbMATHCrossRefGoogle Scholar
  749. Niculescu, S.P. (see G. Mihoc).Google Scholar
  750. Nikiforov, G.K. & Yu.I. Ryzhikov (1983). An iteration method of calculation of service of a nonhomogeneous flow in a multichannel systel. Cybernetics, 19, 260–266.zbMATHCrossRefGoogle Scholar
  751. Nishida, T. & K. Tatsuno (1982). Optimal maintenance policy with minimal repair for stochastically failing system. J.Oper.Res. Soc.Japan, 25, 238–248.zbMATHGoogle Scholar
  752. Nishida, T., F. Ohi & K. Tatsuno (1983). Extended opportunistic maintenance policy for a two-unit system. Math.Japan, 28, 569–575.MathSciNetzbMATHGoogle Scholar
  753. Noebels, R. (1981). A note on stochastic order of probability measures and an application to Markov processes. Z.Oper.Res., Ser.A, 25, 35–43.MathSciNetzbMATHGoogle Scholar
  754. Nollau, V. (see T. Ewers & E. Jannusch).Google Scholar
  755. Nollau, V. (1981). Semi-Markovsehe Prozesse. Deutsch-Taschenbuecher, 31, Verlag Harri Deutsch.Google Scholar
  756. Norman, J.M. (see T.A. Burgin).Google Scholar
  757. Nosenko, V.I. (see V.V. Bondarev).Google Scholar
  758. Nummelin, E. (see E. Arjas).Google Scholar
  759. Nummelin, E. (1976). Limit theorems for σ-recurrent semi-Markov processes. Adv.Appl.Probab., 8, 531–547.MathSciNetzbMATHCrossRefGoogle Scholar
  760. Nummelin, E. (1977). On the concepts of σ-recurrence and σ-transience for Markov renewal processes. Stochastic Processes Appl., 5, 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  761. Nummelin, E. (1978). Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space. Ann.Inst.Henri Poincaré, Sect.B, 14, 119–143.MathSciNetzbMATHGoogle Scholar
  762. Nummelin, E. (1979). A conservation property for general GI/G/1 queues with an application to tandem queues. Adv.Appl.Probab., 11, 660–672.MathSciNetzbMATHCrossRefGoogle Scholar
  763. Nunen (van), J.A.E.E. (1976). Contracting Markov decision processes. Amsterdam, Mathematical Centre Tracts, 71.Google Scholar
  764. Nunen (van), J.A.E.E. & M.L. Puterman (1981). On solving G/M/s queueing control systems. Proc.Jahrestag Oper.Research, DGOR, Essen, 483-490.Google Scholar
  765. Nunen (van), J.A.E.E. & S. Stidham jun. (1981). Action-dependent stopping times and Markov decision process with unbounded rewards. OR Spektrum, 3, 145–152.zbMATHCrossRefGoogle Scholar
  766. Nunen (van), J.A.E.E. & J. Wessels (1976). FORMASY: Forecasting and Recruitment in MAnpower SYstems. Statistica Neerlandica, 30, 173–193.MathSciNetzbMATHCrossRefGoogle Scholar
  767. Nunen (van), J.A.E.E. & J. Wessels (1979). On theory and algorithms for Markov decision problems with the total reward criterion. OR, Spektrum, 1, 57–67.zbMATHCrossRefGoogle Scholar
  768. Nunen (van), J.A.E.E. & J. Wessels (1984). On using discrete random models within decision support systems. Eur.J.Oper.Res., 15, 141–159.zbMATHCrossRefGoogle Scholar
  769. Oakes, D. (1976). Random overlapping intervals — a generalization of Erlang’s loss formula. Ann.of Probab., 4, 940–946.MathSciNetzbMATHCrossRefGoogle Scholar
  770. Odoni, A.R. & E. Roth (1983). An empirical investigation of the transient behavior of stationary queueing systems. Oper.Res., 31, 432–455.zbMATHCrossRefGoogle Scholar
  771. Ohi, F. (see T. Nishida).Google Scholar
  772. Ohno, K. (1981). A unified approach to algorithms with a suboptimality test in discounted semi-Markov decision processes. J.Oper. Res.Soc.Japan, 24, 296–324.MathSciNetzbMATHGoogle Scholar
  773. Ohta, H. (1980) GERT. Analysis of the economic design of control chart. IAPQR Trans., 5, 57–65.zbMATHGoogle Scholar
  774. Onicescu, O., G. Oprisan & G. Popescu (1983). Renewal processes with complete connections. Rev.Roum.Math.Pures Appl., 28, 985–998.MathSciNetzbMATHGoogle Scholar
  775. Opderbeck, H. (see W.W. Chu).Google Scholar
  776. Opitz, O. & M. Schader (1975). Operations Research Verfahren und Marketingsprobleme. Math.Systems in Econ., Verlag Anton Hain. Oprisan, G. (see O.Onicescu).Google Scholar
  777. Oprisan, G. (1976). On the J-X processes. Rev.Roum.Math.Pures Appl., 21, 717–724.MathSciNetzbMATHGoogle Scholar
  778. Oprisan, G. (1977). Some limit theorems for semi-Markov processes with an arbitrary state space. Proc.5th Conf.Probab.Theory, Brasov, 1974, 247–256.MathSciNetGoogle Scholar
  779. Oral, M. & S.S. Rao (1980). An objective function for inventory control models. Proc.Int.Conf.Stochastic Programming, Oxford, 403-426.Google Scholar
  780. Osaki, S. (see A.L. Goel, M. Kinugasa, H. Mine, T. Nakagawa & M. Nakamura).Google Scholar
  781. Osaki, S. & M. Takeda (1979). A two-unit paralleled redundant system with bivariate exponential failure law and allowed down time. Cah.Cent.Etud.Rech.Opér., 21, 55–62.MathSciNetzbMATHGoogle Scholar
  782. Osaki, S. & F. Sugimoto (1976). Optimum repair limit replacement policies for a system subject to intermittent blows. Cah.Cent. Etud.Rech.Opér., 18, 485–491.MathSciNetzbMATHGoogle Scholar
  783. Osawa, H. (see M. Doi).Google Scholar
  784. Ovchinnikov, V.N. (1976). Asymptotic behavior of the time till the first failure of a model with inhomogeneous reservation and rapid repair. Izvestija Akad.Nauk SSSR, Tehn.Kibernet., 82-90 (Russian).Google Scholar
  785. Pages, A. (see M. Gondran).Google Scholar
  786. Pandit, S.M., H.J. Steudel & S.M. Wu (1977). A multiple time series approach to modelling the manufacturing job-shop as a network of queues. Manage.Sci., 24, 456–463.zbMATHCrossRefGoogle Scholar
  787. Pau, L.F. (1981). Failure diagnosis and performance monitoring. Control & Systems Theory, Vol.11, Marcel Dekker, New York.Google Scholar
  788. Pavlov, I.V. & I.A. Ushakov (1978). The asymptotic distribution of the time until a semi-Markov process gats out of a kernel. Eng.Cybern., 16, 68–72.zbMATHGoogle Scholar
  789. Pearce, C.E.M. (1982). A generalization of Rapp’s formula. J.Austr. Math.Soc, Ser.B, 23, 291–296.MathSciNetzbMATHCrossRefGoogle Scholar
  790. Pedrono, R. (see J.M. Helary).Google Scholar
  791. Pelikhov, V.P. (see V.V. Kulba).Google Scholar
  792. Pellaumail, J. (1978). Probabilités stationnaires de réseaux dont les probabilités de transfert dépendent de l’état. Proc.ler Colloq.Math.Appl., AFCET-SMF, Palaiseau, I, 265-275.Google Scholar
  793. Pellaumail, J. (1978). Formule de produit pour réseaux à probabilités de transfert dépendant de l’état. C.R.Acad.Sci.Paris, Ser.A, 287, 157–159.MathSciNetzbMATHGoogle Scholar
  794. Pellaumail, J. (1979). Formule du produit et décomposition de réseaux de files d’attente. Ann.Inst.Henri Poincaré, Sect.B, 15, 261–286.MathSciNetzbMATHGoogle Scholar
  795. Perros, H.G. (see F.G. Foster).Google Scholar
  796. Peshes, L.Ya. (see V.E. Kan).Google Scholar
  797. Pezhinska, G. (1983). Estimates of expectations for the approach moments of renewal points for Markov renewal processes. Dokl.Akad.Nauk Ukr.SSR, Ser.A, 8-10 (Russian).Google Scholar
  798. Phatarfod, R.M. (1982). On some applications of Wald’s identity to dams. Stochastic Processes Appl., 13, 279–292.MathSciNetzbMATHCrossRefGoogle Scholar
  799. Phelps, R.I. (1983). Optimal policy for minimal repair. J.Oper.Res. Soc, 34, 425–427.zbMATHCrossRefGoogle Scholar
  800. Phillips, M.J. (1981). A characterization of the negative exponential distribution with application to reliability theory. J.Appl. Probab., 18, 652–659.MathSciNetzbMATHCrossRefGoogle Scholar
  801. Pickens, G. (ss Ch.J. Mode).Google Scholar
  802. Pinter, J. (1977). Investigations on the maximal distance of empirical distribution series. Alkalmazott Mat.Lapok., 1, 189–195 (Hungarian).MathSciNetGoogle Scholar
  803. Pittel, B. (1979). Closed exponential networks of queues with saturation: The Jackson-type stationary distribution and its asymptotic analysis. Math.Oper.Res., 4, 357–378.MathSciNetzbMATHCrossRefGoogle Scholar
  804. Platzman, L. (1977). Improved conditions for convergence in un-discounted Markov renewal programming. Operations Res., 25, 29–533.MathSciNetCrossRefGoogle Scholar
  805. Pliska, S.R. (1975). A semi-group representation of the maximum expected reward vector in continuous parameter Markov decision theory. SIAM J.Control 13, 1115–1129.MathSciNetzbMATHCrossRefGoogle Scholar
  806. Pliska, S.R. (1976). Optimization of multitype branching processes. Management Sci., 23, 117–124.MathSciNetzbMATHCrossRefGoogle Scholar
  807. Plucinski, E. (1979). On some properties of discrete stochastic processes. Demonstr.Math., 12, 1089–1110.MathSciNetzbMATHGoogle Scholar
  808. Pogosyan, A.L. (see Eh.A. Danielyan).Google Scholar
  809. Politsjuk, L.I. & A.F. Turbin (1977). Asymptotic expansions for some characteristics of semi-Markov processes. Theor.Probab.Math. Stat., 8, 121–126.Google Scholar
  810. Pollett, P.K. (see T.C. Brown).Google Scholar
  811. Pooch, U.W. (see R. Chattergy).Google Scholar
  812. Popescu, G. (see O. Onicescu).Google Scholar
  813. Popov, V.A. (see A.L. Litvinov).Google Scholar
  814. Popov, N.N. (1977). Mass service systems directed by semi-Markov processes. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 94-101 (Russian).Google Scholar
  815. Popovici, Al.A. (1978). A Markovian stochastic model of the profit’s general rate formation. Econom.Comput.Econom.Cybernetics, Studies Res., 85-106.Google Scholar
  816. Porteus, E.L. (1980). Improved iterative computation of the expected discounted return in Markov and semi-Markov chains. Z.Oper.Res., Ser.A, 24, 155–170.MathSciNetzbMATHGoogle Scholar
  817. Potter, R.G. (see F.E. Kobrin).Google Scholar
  818. Prehn, U. (see K. Fleischmann).Google Scholar
  819. Prelov, V.V. (see R.L. Dobrushin).Google Scholar
  820. Premoli, A. (see A. Bobbio).Google Scholar
  821. Prilutskij, M.Kh. (see E.N. Kazantsev).Google Scholar
  822. Prizva, G.I. & L.V. Tihomirova (1978). On the first passage time distribution for Markov processes with discrete intervention of chance. Theory Probab.Math.Stat., 12, 129–135.zbMATHGoogle Scholar
  823. Proschan, F. (see R.E. Barlow).Google Scholar
  824. Proschan, F. & J. Sethuraman (1976). Stochastic comparison of order statistics from heterogeneous populations, with applications to reliability. J.Multivariate Analysis, 6, 608–616.MathSciNetzbMATHCrossRefGoogle Scholar
  825. Protonotatios, E.N. (see A.G. Bobos & J.S. Nicolis).Google Scholar
  826. Pruscha, H. (1983). On continuous time learning models. Lecture Notes Statistics, 20, 175–181.MathSciNetCrossRefGoogle Scholar
  827. Pujolle, G. (see E. Gelenbe).Google Scholar
  828. Pujolle, G. (1979). The influence of protocols on the stability conditions in packet switching networks. IEEE Trans.Commun. COM-27, 611-619.Google Scholar
  829. Purdue, P. (see D. Linton).Google Scholar
  830. Purdue, P. & D. Weiner (1977). A semi-Markov approach to stochastic compartmental models. Commun.Stat., Theory Methods A6, 1231-1243.Google Scholar
  831. Puri Prem, S. (1978). A generalization of a formula of Pollaczek and Spitzer as applied to a storage model. Sankhya, Ser.A, 40, 237–252.MathSciNetzbMATHGoogle Scholar
  832. Puri Prem, S. (1979). On certain problems involving non-identifiability of distributions arising in stochastic modelling. Proc. Int.Conf.Optimizing methods in Statistics, Bombay,1977, 403-418.Google Scholar
  833. Puri Prem, S. & S.W. Wollford (1981). On a generalized storage model with moment assumptions. J.Appl.Probab., 18, 473–481.MathSciNetzbMATHCrossRefGoogle Scholar
  834. Puterman, M.L. (see J.van Nunen).Google Scholar
  835. Pyke, R. & R.A. Schaufele (1981). Correction to: The existence and uniqueness of stationary measures for Markov-renewal processes. Ann.of Probab., 9, 348.MathSciNetzbMATHCrossRefGoogle Scholar
  836. Quelle, G. (1976). Dynamic programming of expectation and variance. J.Math.Analysis Appl., 55, 239–252.MathSciNetzbMATHGoogle Scholar
  837. Rabe, H. (see U. Jansen).Google Scholar
  838. Racicot, R.L. (1976). Approximate confidence intervals for reliability of a series system. IEEE Trans.Reliab., R-25, 265–269.CrossRefGoogle Scholar
  839. Rajarshi, M.B. (1974). Success runs in a two-state Markov chain. J.Appl.Probab., 11, 190–192.MathSciNetzbMATHCrossRefGoogle Scholar
  840. Ramalhoto, M.F. (see D.H. Girmes).Google Scholar
  841. Ramakrishnan, K.G. (see J. McKenna & D. Mitra).Google Scholar
  842. Ramamurthy, K. (see K.B. Athreya & N.K. Jaiswal).Google Scholar
  843. Ramanarayanan, R. (1981). Explicit steady state solution for a Markovian inventory system. Stat.Neerl., 35, 215–219.MathSciNetzbMATHCrossRefGoogle Scholar
  844. Ramanarayanan, R. & K. Usha (1981). General analysis of systems in which a 2-unit system is a sub-system. Math.Operationsforsch. Stat., 12, 629–637.MathSciNetzbMATHGoogle Scholar
  845. Ramaswami, V. (1981). Algorithms for a continuous-review (s, S) inventory system. J.Appl.Probab., 18, 461–472.MathSciNetzbMATHCrossRefGoogle Scholar
  846. Rangan, A. (see A.H. Kairo).Google Scholar
  847. Rangaswamy, N.S. (see N.K. Jaiswal).Google Scholar
  848. Rao Chennupati, R. (see A.M. Kshirsagar).Google Scholar
  849. Rao, M.R. (see Y.M.I. Dirickx).Google Scholar
  850. Rao, S.S. (see M. Oral).Google Scholar
  851. Rappaport, D. (see J. Dayan).Google Scholar
  852. Raugi, A. (1980). Quelques remarques sur le théorème de la limite centrale sur un groupe de Lie. C.R.Acad.Sci.Paris, Ser.A, 290, 103–106.MathSciNetzbMATHGoogle Scholar
  853. Ravichandran, N. & R. Subramanian (1980). An n-unit priority redundant system. J.Math.Phys.Sci., 14, 85–94.MathSciNetzbMATHGoogle Scholar
  854. Reetz, D.A. (1976). A decision exclusion algorithm for a class of Markovian decision processes. Z.Operat.Res., Ser.A, 20, 125–131.MathSciNetzbMATHGoogle Scholar
  855. Reetz, D.A. (1980). Kontrahierende endliche Markoffsche Entscheidungsprozesse. G. Marchai un H.J. Matzenbacher Wissenschaftsverlag, Berlin.Google Scholar
  856. Reiman, M.I. (see J.M. Harrison).Google Scholar
  857. Reinhard, J.M. (see J. Janssen).Google Scholar
  858. Reinhard, J.M. (1980). Jeux de survie économique: un modèle semi-markovien. Cah.Cent.Etud.Rech.Oper., 22, 101–110.MathSciNetzbMATHGoogle Scholar
  859. Reinhard, J.M. (1981). A semi-Markovian game of economic survival. Scand.Actuarial J., 23-38.Google Scholar
  860. Reinhard, J.M. (1982). Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes. Ann.Inst. Henri Poincaré, Sect.B, 18, 319–333.MathSciNetzbMATHGoogle Scholar
  861. Reiser, M. (see S.S. Lavenberg).Google Scholar
  862. Reiser, M. (1977). Numerical methods in separable queueing networks. Algorithm.Meth.Probab., Stud.Manage.Sci., 7, 113–142.Google Scholar
  863. Reiser, M. (1981). Mean value analysis and convolution method for queue-dependent servers in closed queueing systems. Performance Eval., 1, 7–18.MathSciNetzbMATHCrossRefGoogle Scholar
  864. Renger, K. (see G. Lauenstein).Google Scholar
  865. Resnick, S.I. (see J.M. Harrison).Google Scholar
  866. Reznikov, S.I. (1979). A new proof for a limit theorem of the phase enlargement type for semi-Markov processes. Teor.Sluchajnykh Protsessov, 7, 85-103 (Russian).Google Scholar
  867. Reznikov, S.I. (1980). A limit theorem of the type of phase enlargement for random processes which are complemented to weakly inhomogeneous Markov processes. Dopov.Akad.Nauk Ukr.RSR, Ser.A, 16-18 (Ukrainian).Google Scholar
  868. Reznikov, S.I. (1980). State enlargement of random processes that are complemented to Markov processes. Ukr.Math.J., 31, 539–544.zbMATHCrossRefGoogle Scholar
  869. Ricciardi, L.M. (1980). Stochastic equations in neurobiology and population biology. Lecture Notes Biomath., 39, 248–263.MathSciNetCrossRefGoogle Scholar
  870. Richter, K. (1982). Dynamische Aufgaben der diskreten Optimierung. Akademie-Verlag, Berlin.zbMATHGoogle Scholar
  871. Rieder, U. (1975). Bayesian dynamic programming. Adv.Appl.Probab., 7, 330–348.MathSciNetzbMATHCrossRefGoogle Scholar
  872. Rieder, U. (1976). On the characterization of optimal policies in non-stationary dynamic programs. Z.Angew.Math.mech., 56, Sonderheft, T359-T360.Google Scholar
  873. Rishel, R. (1982). A partially observed inventory problem. Lect. Notes Control Inf.Sci., 43, 345–353.MathSciNetCrossRefGoogle Scholar
  874. Ritchie, E. & P. Wilcox (1977). Renewal theory forecasting for stock control. Eur.J.Oper.Res., 1, 90–93.zbMATHCrossRefGoogle Scholar
  875. Robinson, D. (1978). Optimization of priority queues — a semi-Markov decision chain approach. Manage.Sci., 24, 545–553.zbMATHCrossRefGoogle Scholar
  876. Rohal-Ilkiv, B. & J. Skakala (1977). 2-unit redundant systems with replacement & repair. IEEE Trans.Re1iab., R-26, 294–296.Google Scholar
  877. Rolski, T. (1977). A relation between imbedded Markov chains in piecewise Markov processes. Bull.Acad.Polon.Sci., Ser.Sci. Math.astron.phys., 25, 181–189.MathSciNetzbMATHGoogle Scholar
  878. Romanov, A.K. & A.I. Terekhov (1980). Some models of the workforce dynamics in organizations. Optimizatsiya, 25, 124–138 (Russian).Google Scholar
  879. Rosberg, Z. (1980). A positive recurrence criterion associated with multidimensional queueing systems. J.Appl.Probab., 17, 790–801.MathSciNetzbMATHCrossRefGoogle Scholar
  880. Rosberg, Z. (1982). Semi-Markov decision processes with polynomial reward. J.Appl.Probab., 19, 301–309.MathSciNetzbMATHCrossRefGoogle Scholar
  881. Rosemann, H. (1981). Zuverlaessigkeit und Verfuegbarkeit techniser Anlagen und Geraete. Mit praktischen Beispielen von Berechnung und Einsatz in Schwachstellenanalysen. Springer-Verlag, Berlin.Google Scholar
  882. Rosenshine, M. & R.C. Rue (1981). Optimal control for entry of many classes of customers to an M/M/1 queue. Nav.Res.Logist.Q., 28, 489–495.MathSciNetzbMATHCrossRefGoogle Scholar
  883. Ross, S.M. (1976). On the time to first failure in multicomponent exponential reliability systems. Stochastic Processes Appl., 4, 167–173.MathSciNetzbMATHCrossRefGoogle Scholar
  884. Roth, E. (see A.R. Odoni).Google Scholar
  885. Roussas, G.G. (see M.G. Akritas).Google Scholar
  886. Rubchinskij, A.A. (see B.A. Gennison).Google Scholar
  887. Rubin, I. (1979). Message delays in FDMA and TDMA communcation channels. IEEE Trans.Commun.C0M-27, 769-777.Google Scholar
  888. Rubinovitch, M. (see Z. Barzily).Google Scholar
  889. Rumyantsev, N.V. (1982). Investigation of a service system with heating at the end of the occupation time by methods of the theory of semi-Markov processes. Kibernetika, 120-122 (Russian).Google Scholar
  890. Rue, R.C. (see M. Rosenshine).Google Scholar
  891. Ryan, T.A. jun. (1976). A multidimensional renewal theorem. Ann.of Probab., 4, 656–661.zbMATHCrossRefGoogle Scholar
  892. Rybko, A.N. (1981). Stationary distributions of time-homogeneous Markov processes modelling message switching communication networks. Probl.Inf.Transm., 17, 49–63.MathSciNetzbMATHGoogle Scholar
  893. Rybko, A.N. (1982). Existence conditions for a steady-state mode for two types of communications networks with message switching. Probl.Inf.Transm., 18, 76–84.MathSciNetzbMATHGoogle Scholar
  894. Rykov, V. (see S. Jolkof).Google Scholar
  895. Ryzhikov, Yu.I (see G.K. Nikiforov).Google Scholar
  896. Ryzhikov, Yu.I. (1977). Servicing of priorityless flow of non-uniform requests in a multichannel Markov system. Probl.control Inform.Theory 6, 431–436.zbMATHGoogle Scholar
  897. Sadjaki, D. (see F. Bestwick).Google Scholar
  898. Sahay, B. (see W. Lennox).Google Scholar
  899. Sahin, I. (see Y. Balcer).Google Scholar
  900. Sahin, I. (1978). Cumulative constrained sojourn times in semi-Markov processes with an application to pensionable service. J.Appl. Probab., 15, 531–542.MathSciNetzbMATHCrossRefGoogle Scholar
  901. Sakino, E. (see T. Inagaki).Google Scholar
  902. Sanderson, A.C. (see T.W. Calvert).Google Scholar
  903. Santner, T.J. (see C.C. Brown).Google Scholar
  904. Shanthikumar, J.G. (see R.G. Sargent).Google Scholar
  905. Satia, J.K. (see R.E. Lave).Google Scholar
  906. Satyanarayana, A. (1982). A unified formula for analysis of some network reliability problems. IEEE Trans.Reliab. R-31, 23–32.CrossRefGoogle Scholar
  907. Sauer, C.J. (see S.S. Lavenberg).Google Scholar
  908. Sauer, W. (1980). Eine symbolische Methode zur Berechnung der mittleren Dauer stochastischer technologischer Prozesse. Wiss. Z.Tech.Univ.Dresd., 29, 261–265.MathSciNetzbMATHGoogle Scholar
  909. Saw, Y. (see M. Motoori).Google Scholar
  910. Schader, M. (see O. Optiz).Google Scholar
  911. Schael, M. (see M. Kolonko).Google Scholar
  912. Schael, M. (1975). Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z.Wahrscheinlichkeitstheorie verw.Gebiete, 32, 179–196.zbMATHCrossRefGoogle Scholar
  913. Schael, M. (1975). On dynamic programming: Compactness of the space of policies. Stochastic Processes Appl., 3, 345–364.MathSciNetzbMATHCrossRefGoogle Scholar
  914. Schael, M. (1979). On dynamic programming and statistical decision theory. Ann.Statist., 7, 432–445.MathSciNetzbMATHCrossRefGoogle Scholar
  915. Schassberger, R. (see A.D. Barbour, W.E. Helm & A. Hordijk).Google Scholar
  916. Schassberger, R. (1976). On the equilibrium distribution of a class of finite-stage generalized semi-Markov processes. Math.Oper. Res., 1, 395–406.MathSciNetzbMATHCrossRefGoogle Scholar
  917. Schassberger, R. (1978). Insensitivity of steady-state distributions of generalized semi-Markov processes, I, II. Ann.of Probab., 5, 87-89, 1977 & 6, 85–93.MathSciNetzbMATHGoogle Scholar
  918. Schassberger, R. (1978). The insensitivity of stationary probabilities in networks of queues. Adv.Appl.Probab., 10, 906–912.MathSciNetzbMATHCrossRefGoogle Scholar
  919. Schassberger, R. (1978). Insensitivity of steady-state distributions of generalized semi-Markov processes with speeds. Adv.Appl. Probab., 10, 836–851.MathSciNetzbMATHCrossRefGoogle Scholar
  920. Schassberger, R. (1979). A definition of discrete product form distributions. Z.Oper.Res., Ser.A 23, 189–195.MathSciNetzbMATHGoogle Scholar
  921. Schaufele, R.A. (see R. Pyke).Google Scholar
  922. Schaufele, R.A. (1981). A class of time-reversible semi-Markov processes. Can.J.Stat., 9, 39–56.MathSciNetzbMATHCrossRefGoogle Scholar
  923. Scheaffer, R.L. (see R.S. Leavenworth).Google Scholar
  924. Schellhaas, H. (1974). Zur Extrapolation in Markoffschen Entscheidungsmodellen mit Diskontierung. Z.Operat.Res., Ser.A 18, 91–104.MathSciNetzbMATHGoogle Scholar
  925. Schellhaas, H. (1979). Ueber Semi-Markoffsche Entscheidungsprozesse mit endlichem Horizont. Proc.DGOR Meet.Oper.Res., Berlin, 122-129.Google Scholar
  926. Schellhaas, H. (1979). Semi-regenerative processes with unbounded rewards. Math.Oper.Res., 4, 70–78.MathSciNetzbMATHCrossRefGoogle Scholar
  927. Schellhaas, H. (1980). Markov renewal decision processes with finite horizon. OR Spektrum 2, 33–40.zbMATHCrossRefGoogle Scholar
  928. Schneeweiss, Ch. (1974). Dynamisches Programmieren. Physica Paperback, Physica-Verlag, Wien.Google Scholar
  929. Scheuer, E.M. (see L.A. Baxter & W.R. Blischke).Google Scholar
  930. Schick, I.C. (see S.B. Gershwin).Google Scholar
  931. Schmee, J. (see E. Hannan).Google Scholar
  932. Schmidt, V. (see U. Arndt).Google Scholar
  933. Schramm, K. (1980). Konvergenzvergleiche bei Loesungen linearer Differenzengleichungen mit konstanten Koefficienten. Z.Oper. Res., Ser.A 24, 125–136.MathSciNetzbMATHGoogle Scholar
  934. Schweitzer, P.J. (see A. Federgruen, B. Gavish & A. Hordijk).Google Scholar
  935. Schweitzer, P.J. (1982). Solving MDP functional equation by lexicographic optimization. RAIR0, Rech.Opér. 16, 91–98.MathSciNetzbMATHGoogle Scholar
  936. Schweitzer, P.J. (1983). On the solvability of Bellman’s functional equations for Markov renewal programming. J.Math.Analysis Appl., 96, 13–23.MathSciNetzbMATHCrossRefGoogle Scholar
  937. Schwetman, H.D. (see G. Balbo).Google Scholar
  938. Scif, F.J. (1981). Stochastic and cooperative model of excocytotic secretion of thyrotropin. Proc.6th Conf.Probability Theory, Brasov, 513-520.Google Scholar
  939. Semenov, A.T. (1976). Sojourn times of a semi-Markov random walk on the semi-axis. Lith.Math.J. 15, 659–664.zbMATHCrossRefGoogle Scholar
  940. Sengupta, J.K. (see S.K. Gupta).Google Scholar
  941. Serdakov, A.S. (see O.N. Martynenko).Google Scholar
  942. Sereda, V.I. (see V.V. Anisimov).Google Scholar
  943. Serfozo, R.F. (1979). An equivalence between continuous and discrete time Markov decision processes. Oper.Res., 27, 616–620.MathSciNetzbMATHCrossRefGoogle Scholar
  944. Sergachev, O.V. (1979). On the analysis of dynamic operating modes of deterministic automata. Autom.Control Comput.Sci., 13, 13–17.zbMATHGoogle Scholar
  945. Sethuraman, J. (see F. Proschan).Google Scholar
  946. Sevcik, K.C. (1982). Queueing networks and their computer system applications: An introductory survey. Proc.NAT ASI Deterministic and Stochastic Scheduling, Durham, 211-222.Google Scholar
  947. Shahul, H.M.A. (see S. Kalpakam).Google Scholar
  948. Shakhbazov, A.A. (1982). Limiting distribution of the time of first entry for semi-Markov processes and its application in reliability theory. Eng.Cybern., 20, 82–90.zbMATHGoogle Scholar
  949. Shakhbazov, A.A. & A.D. Soloviev (1981). Nonhomogeneous standby with renewal. Eng.Cybern., 19, 30–38.zbMATHGoogle Scholar
  950. Shanthikumar, J.G. & R.G. Sargent (1981). An algorithmic solution for queueing model of a computer system with interactive and batch jobs. Performance Eval., 1, 344–357.MathSciNetzbMATHGoogle Scholar
  951. Sharma, J. (see K.B. Misra).Google Scholar
  952. Sharma, S.C. (see Y.P. Gupta).Google Scholar
  953. Sharma, S.C. (1976). Cumulative processes associated with Markov renewal processes in space. J.Math.Sci., 10, 63–68.Google Scholar
  954. Shedler, G.S. (see D.L. Iglehart).Google Scholar
  955. Shedler, G.S. & D.R. Slutz (1981). Irreducibility in closed multiclass networks of queues with priorities: passage times of a marked job. Performance Eval., 1, 334–343.MathSciNetzbMATHGoogle Scholar
  956. Shedler, G.S. & J. Southard (1982). Regenerative simulation of networks of queues with general service times: passage through subnetworks. IBM J.Res.Dev., 26, 625–633.MathSciNetzbMATHCrossRefGoogle Scholar
  957. Shibanov, S.E. (see A.S. Chebotarev).Google Scholar
  958. Shishonok, N.A. (see V.E. Dikarev).Google Scholar
  959. Shlesinger, M.F. (see U. Landman).Google Scholar
  960. Shura-Bura, A.E. (see E.V. Dzirkal).Google Scholar
  961. Shurenkov, V.M. (see Ju.S. Davidovic & Ya.I. Elejko).Google Scholar
  962. Shurenkov, V.M. (1977). A time substitution which preserves the semi-Markov property and regularity conditions. Theory Probab.Math. Stat., 14, 159–163.zbMATHGoogle Scholar
  963. Sibirskaya, T.K. (1982). On a certain approach to the determination of the characteristics of closed queueing networks in analytic form. Izvestija Akad.Nauk Mold.SSR, Ser.Fiz.-Tekh.Mat.Nauk, 55-59 (Russian).Google Scholar
  964. Siedersieben, J. (1981). Dynamically optimized replacement with a Markovian renewal process. J.Appl.Probab., 18, 641–651.MathSciNetCrossRefGoogle Scholar
  965. Sigalotti, L. (1976). Particulari processi markoffiani d’arrivo che si arrestano in intervalli finiti di tempo e che presentano la scambiabilita degli incrementi. Rend.Ist.Mat.Univ.Trieste, 7, 173–181 (Italian).MathSciNetzbMATHGoogle Scholar
  966. Silvestrov, D.S. (see D. Banach & E.I, Kaplan).Google Scholar
  967. Silvestrov, D.S. (1980). Mean hitting times of semi-Markov processes and queueing networks. Elektron.Informationsverarbeitung Kybernetik, 16, 399–415 (Russian).MathSciNetGoogle Scholar
  968. Silvestrov, D.S. (1980). Exponential bounds in ergodic theorems for regenerative processes. Elektron.Informationsverarbeitung Kybernetik, 16, 461–463 (Russian).MathSciNetGoogle Scholar
  969. Silvestrov, D.S. (1980). Synchronized regenerative processes and explicit estimates of the convergence rate in ergodic theorems. Dopov.Akad.nauk Ukr.RSR, Ser.A, 21-24 (Ukrainian).Google Scholar
  970. Silvestrov, D.S. & G.T. Tursunov (1980). General limit theorems for sums of controlled random variables. II. Theory Probab.Math. Stat., 20, 131–141.Google Scholar
  971. Simon, B. (see R.L. Disney).Google Scholar
  972. Singh, C. (1980). Equivalent rate approach to semi-Markov processes. IEEE Trans.Reliab. R-29, 273–274.CrossRefGoogle Scholar
  973. Sinha, S.M. (see M. Agarwal & D.V.S. Kapil).Google Scholar
  974. Sityuk, V.N. (see V.V. Anisimov).Google Scholar
  975. Sityuk, V.N. (1981). On the limit behaviour of semi-Markov systems with inhomogeneous probabilities of failures. Dokl.Akad.Nauk Ukr.SSR, Ser.A, 24-27 (Russian).Google Scholar
  976. Skakala, J. (see B. Rohal-Ilkiv).Google Scholar
  977. Skitovitch, V.P. (1976). A system of mass maintenance with deleted and restored instruments. Control, reliability and navigation. No 3. Interuniv.Collect.Sci.Works, Saransk, 72-76 (Russian).Google Scholar
  978. Sklyarevich, F.A. (1980). Allowance for structural variability of computer systems. Autom.Control Comput.Sci., 14, 52–56 (Russian).zbMATHGoogle Scholar
  979. Skorohod, A.V. (see I.I. Gikman & T.I. Nasirova).Google Scholar
  980. Sladky, K. (1977). On the optimality conditions for semi-Markov decision processes. Trans.7th Prague Conf. Vol.A, 1974, 555–562.MathSciNetGoogle Scholar
  981. Slutz, D.R. (see G.S. Shedler).Google Scholar
  982. Smagin, V.A. (1975). Mean frequency of failures of a system with unreliable spare parts. Izvestija Akad.Nauk SSSR, Tehn.Kibernet., 118-120 (Russian).Google Scholar
  983. Smirnov, S.N. (see G.P. Klimov).Google Scholar
  984. Sniedovich, M. (1978). Dynamic programming and principles of optimality. J.Math.Analysis Appl., 65, 586–606.MathSciNetzbMATHCrossRefGoogle Scholar
  985. Sobel, M.J. (1982). The variance of discounted Markov decision processes. J.Appl.Probab., 19, 794–802.MathSciNetzbMATHCrossRefGoogle Scholar
  986. Soloviev, A.D. (see B.V. Gnedenko & A.A. Shakhbazov).Google Scholar
  987. Sommer, C.J. (see S.W. Lagakos).Google Scholar
  988. Sonderman, D. (1980). Comparing semi-Markov processes. Math.Oper. Res., 5, 110–119.MathSciNetzbMATHCrossRefGoogle Scholar
  989. Sonnenschein, J. (see R. Consael).Google Scholar
  990. Southard, J. (see G.S. Shedler).Google Scholar
  991. Soyka, M.G. (see Ch.J. Mode).Google Scholar
  992. Soyster, A.D. & D.I. Toof (1976). Some comparative and design aspects of fixed cycle production. Naval Res.Logist.Q., 23, 437–454.MathSciNetzbMATHCrossRefGoogle Scholar
  993. Spaniol, O. (1979). Modelling of local computer networks. Proc.4th Int.Symp.Performance of comput Systems, Vienna, 503-516.Google Scholar
  994. Spreen, D. (see A. Federgruen).Google Scholar
  995. Spreen, D. (1981). Reducing the computational complexity of the multichain policy iteration algorithm in undiscounted Markov renewal programming. Methods Oper.Res., 44, 203–211.zbMATHGoogle Scholar
  996. Spreen, D. (1981). A further anticycling rule in multichain policy iteration for undiscounted Markov renewal programs. Z.Oper.Res., Ser.A 25, 225–233.MathSciNetzbMATHGoogle Scholar
  997. Srinivasan, S.K. (see D. Bhaskar).Google Scholar
  998. Srinivasan, S.K. (1974). Stochastic point processes. Ch.Griffin & Co.Google Scholar
  999. Srinivasan, S.K. & R. Subramanian (1980). Probabilistic analysis of redundant systems. Lecture Notes in Economics & Mathematical Systems, 175.Google Scholar
  1000. Srinivasan, S.K. & N. Venugopalacharyulu (1976). Analytic solution of a finite dam with bounded input. J.Math.Phys.Sci., Madras, 10, 141–164.MathSciNetzbMATHGoogle Scholar
  1001. Srivastava, H.M. (see H.B. Kekre).Google Scholar
  1002. Stadje, W. (1980). Reducierte Semi-Markov Prozesse. Methods Oper. Res., 37, 467–476.zbMATHGoogle Scholar
  1003. Staniewsky, P. & R. Weinfeld (1980). Optimization of denumerable semi-Markov decision processes. Syst.Sci., 6, 129–141.Google Scholar
  1004. Stefanski, L.A. (1982). An application of renewal theory to software reliability. Proc.27th Conf.Design of Experiments, Raleigh, 101-118.Google Scholar
  1005. Steinhardt, U. (see K. Neumann).Google Scholar
  1006. Stengos, D. & L.C. Thomas (1980). The blast furnaces problem. Eur. J.Oper.Res., 4, 330–336.zbMATHCrossRefGoogle Scholar
  1007. Stepanov, S.N. (1981). Probabilistic characteristics of an incomplete accessible multi-phase service system with several types of repeated call. Probl.Control Inf.Theory, 10, 387–401 (Russian).zbMATHGoogle Scholar
  1008. Steudel, H.J. (see S.M. Pandit).Google Scholar
  1009. Stidham, S. jun (see Y.Jo Kyung, S.G. Johansen & J.van Nunen).Google Scholar
  1010. Stiff1er, J.J. (1978). The reliability of a fault-tolerant configuration having variable coverage. IEEE Trans.Comput.C-27, 1195-1197.Google Scholar
  1011. Stokalski, A. (1976). Optimization of the control schedule for Markov models of an operation system. Podstawy Sterowania, 6, 57–70 (Polish).MathSciNetzbMATHGoogle Scholar
  1012. Stoyan, D. (see D. Koenig).Google Scholar
  1013. Stoyan, D. (1977). Qualitative Eigenschaften und Abschaetzungen stochastischer Modelle. R. Oldenbourg Verlag, Muenchen. Streller, A. (see P. Franken).Google Scholar
  1014. Subramanian, R. (see K.P. Kistner, N. Ravichandran & S.K. Srinivasan). Sugimoto, F. (see S. Osaki).Google Scholar
  1015. Sukhov, Yu.M. (see R.L. Dobrushin & M.Ya. Kelbert).Google Scholar
  1016. Sum, H. (see I.I. Ezov).Google Scholar
  1017. Szasz, D. (1974). A limit theorem for semi-Markov processes. J.Appl. Probab., 11, 521–528.MathSciNetzbMATHCrossRefGoogle Scholar
  1018. Tadzhiev, A. (see V.S. Korolyuk).Google Scholar
  1019. Tadzhiev, A. (1978). Asymptomatic expansion for the distribution of absorption time of a semi-Markov process. Ukr.Math.J., 30, 331–335.zbMATHCrossRefGoogle Scholar
  1020. Tadzhiev, A. (1978). Asymptomatic expansion for the distribution of absorption time of a semi-Markov process. The case of several ergodic subsets. Izvestija Akad.Nauk Turkm.SSR, Ser.Fiz.-teh. him.geol.Nauk., 12-18 (Russian).Google Scholar
  1021. Takacs, L. (1976). On seome recurrence equations in a Banach algebra Acta Sci.Math., 38, 399–416.MathSciNetzbMATHGoogle Scholar
  1022. Takacs, L. (1977). On the ordered partial sums of real random variables. J.Appl.Probab., 14, 75–88.MathSciNetzbMATHCrossRefGoogle Scholar
  1023. Takacs, L. (1977). Combinatorial methods in the theory of stochastic processes, 2nd edition. R.E.Krieger Publ.Co., New York.zbMATHGoogle Scholar
  1024. Takacs, L. (1978). On fluctuations of sums of random variables. Studies in Probab.Ergodic Theory, Adv.Math., Suppl.Stud.Vol., 2, 45–93.MathSciNetGoogle Scholar
  1025. Takahashi, H. & M. Woodroofe (1981). Asymptotic expansions in nonlinear renewal theory. Commun.Stat., Theory Methods A 10, 2113–2135.MathSciNetCrossRefGoogle Scholar
  1026. Takami, I. (see T. Inagaki).Google Scholar
  1027. Takeda, M. (see S. Osaki).Google Scholar
  1028. Tamaki, M. (1979). Recognizing both the maximum and the second maximum of a sequence. J.Appl.Probab., 16, 803–812.MathSciNetzbMATHCrossRefGoogle Scholar
  1029. Tamaki, M. (1982). An optimal parking problem. J.Appl.Probab., 19, 803–814.MathSciNetzbMATHCrossRefGoogle Scholar
  1030. Tamarkin, M.B. (see V.D. Maishakov).Google Scholar
  1031. Tambouratzis, D.G. (1979). A generalization of the M/G/1 queue. Bull.Greek Math.Soc., 20, 106–120.MathSciNetzbMATHGoogle Scholar
  1032. Tammela, Y. (1980). Optimal control of production processes with complex structure. A model with complete information. Izvestija Akad.Nauk Ehst.SSR, Fiz., Math., 29, 201–207 (Russian).MathSciNetzbMATHGoogle Scholar
  1033. Tan, H.H. (1975). An algorithm to compute the resolvent of a stochastic matrix with application to Markov decision processes. IEEE Trans.Systems Ma; Cybernetics, SMC-5, 617-620.Google Scholar
  1034. Tanaka, K. (see H. Homma & S. Iwase).Google Scholar
  1035. Tanaka, K. & K. Wakuta (1976). On Markov games with the expected average reward criterion, II. Sci.Rep.Niigata Univ., Ser.A 13, 49–54.MathSciNetzbMATHGoogle Scholar
  1036. Tanaka, K. & K. Wakuta (1976). On semi-Markov games. Sci.Rep.Niigata Univ., Ser.A 13, 55–64.MathSciNetzbMATHGoogle Scholar
  1037. Tanaka, K. & K. Wakuta (1978). On continuous time Markov games with countable state space. J.Operations Res.Soc.Japan, 21, 17–28.MathSciNetzbMATHGoogle Scholar
  1038. Taylor, H.M. (1975). Optimal replacement under additive damage and other failure models. Naval Res.Logist.Quart., 22, 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  1039. Tatsuno, K. (see T. Nishida).Google Scholar
  1040. Teghem, J. jun. (1979). Use of discrete transforms for the study of a GI/M/s queue with impatient customer phenomena. Z.Operat.Res., Ser.A 23, 95–106.MathSciNetzbMATHGoogle Scholar
  1041. Ten Hoopen, M. (1977). Incidental distortions in a point processes. Biom.J., 19, 3–7.zbMATHGoogle Scholar
  1042. Teplickij, M.G. (1977). Problem of the optimal control of a Markov chain with incomplete information. Izvestija Akad.Nauk.SSSR, tehn.Kibernet., 89-94 (Russian).Google Scholar
  1043. Tepleckij, M.G. (1978). On some problems concerning control of a finite Markov chain. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 96-100 (Russian).Google Scholar
  1044. Terekhov, A.I. (see A.K. Romanov).Google Scholar
  1045. Teugels, J.L. (1974). On Markov success chains. Proc.Belgo-Israeli Coll.Oper.Res., Louvain, 1972, 251–264.MathSciNetGoogle Scholar
  1046. Teugels, J.L. (1976). A bibliography on semi-Markov processes. J.Comput.Appl.Math., 2, 125–144.MathSciNetzbMATHCrossRefGoogle Scholar
  1047. Thomas, L.C. (see D. Stengos).Google Scholar
  1048. Thomas, L.C. (1981). Second order bounds for Markov decision processes. J.Math. Anal. Appl., 80, 294–297.MathSciNetzbMATHCrossRefGoogle Scholar
  1049. Thomas, L.C. (1982). The Wijngaard-Stidham bisection method and replacement models. IEEE Trans, Reliab. R-31, 482–484.CrossRefGoogle Scholar
  1050. Thomas, L.C. & L. Yeh (1983). Adaptive control of M/M/1 queues — continuous-time Markov decision processes approach. J.Appl. Probab., 20, 368–379.MathSciNetzbMATHCrossRefGoogle Scholar
  1051. Thompson, M.E. (1981). Estimation of the parameters of a semi-Markov process from censored records. Adv.Appl.Probab., 13, 804–825.zbMATHCrossRefGoogle Scholar
  1052. Thorin, O. (1982). Probabilities of ruin. Scand.Actuarial J., 65-102.Google Scholar
  1053. Tien, T.M. (1977). Generalized piece-wise linear Markov processes for queueing and reliability theory. Math.Operationsforsch. Stat., Ser.Optimization, 8, 419–431.zbMATHCrossRefGoogle Scholar
  1054. Tihomirova, L.V. (see G.I. Prizva).Google Scholar
  1055. Tijms, H.C. (see A. Federgruen & A. Hordijk).Google Scholar
  1056. Tijs, S.H. (1980). Stochastic games with one big action space in each state. Methods Oper.Res., 38, 161–173.zbMATHGoogle Scholar
  1057. Tikhonov, V.I. (see M.A. Mironov).Google Scholar
  1058. Timoshenko, A.R. (see V.D. Malshakov).Google Scholar
  1059. Toeroek, T. (see E. Gardos & T. Gergely).Google Scholar
  1060. Toeroek, T. (1979). Interleaved memory systems with Markovian. requests. Proc.4th Int.Symp.Performance Comp.Systems, Vienna, 421-428.Google Scholar
  1061. Tomko, J. (1981). A limit theorem for Markov renewal processes. Proc.1st Pannonian Symp.Math.Statistics, Bad Tatzmannsdorff. Lecture Notes Statist., 8, 277–283.MathSciNetCrossRefGoogle Scholar
  1062. Tomko, J. (1981). Semi-Markov analysis of an (E//K)/G/1 queue with finite waiting room. Colloq.Math.Soc.Janos Bolyai, 24, 381–389.MathSciNetGoogle Scholar
  1063. Tomusyak, A.A. (see V.S. Korolyuk).Google Scholar
  1064. Toof, D.I. (see A.D. Soyster).Google Scholar
  1065. Tormey, D.C. (see J. Crowley).Google Scholar
  1066. Towsley, D. (1980). Queueing network models with state-dependent routing. J.Assoc.Comput.Mach., 27, 323–337.MathSciNetzbMATHCrossRefGoogle Scholar
  1067. Treier, V.N. (1974). Kinetic foundations for the theory of life-length and reliability of machines equipment. Doklady Akad. Nauk BSSR 18, 333–336 (Russian).zbMATHGoogle Scholar
  1068. Trueman, R.E. (1977). An introduction to quantitative methods for decision making, 2nd edition. Holt, Rinehart and Winston, New York.zbMATHGoogle Scholar
  1069. Tsaregradskij, I.P. (1982). On a queueing system with an infinite number of locally interacting devices. Teor.Veroyatn.Primen., 27, 583–587.zbMATHGoogle Scholar
  1070. Tsur, S. (1978). Analysis of queueing networks in which processes exhibit locality-transition behaviour. Inform.Processing Letters, 7, 20–23.zbMATHCrossRefGoogle Scholar
  1071. Turbin, A.F. (see S.M. Brodi, V.S. Korolyuk, V.N. Kuznetsov, B.G. Levinskij & L.I. Politsjuk).Google Scholar
  1072. Tursunov, G.T. (see D.S. Silvestrov).Google Scholar
  1073. Tweedie, R.L. (see E. Arjas).Google Scholar
  1074. Unkelbach, H.D. (1979). Convergence to equilibrium in a traffic model with restricted passing. J.Appl.Probab., 16, 881–889.MathSciNetzbMATHCrossRefGoogle Scholar
  1075. Usha, K. (see R. Ramanarayanan).Google Scholar
  1076. Usha, K. (1979). Reliability and availability of 2-unit warm-standby system with random transition rates. IEEE Trans.Reliab. R-28, 333.CrossRefGoogle Scholar
  1077. Ushakov, I.A. (see I.V. Pavlov).Google Scholar
  1078. Ushakov, I.A. (1980). An approximate method of calculating complex systems with renewal. Eng.Cybern., 18, 76–83.Google Scholar
  1079. Varaiya, P. & J. Walrand (1980). Interconnections of Markov chains and quasi-reversible queueing networks. Stochastic Processes Appl., 10, 209–219.MathSciNetzbMATHCrossRefGoogle Scholar
  1080. Varaiya, P. & J. Walrand (1080). Sojourn times and the overtaking condition in Jacksonian networks. Adv.Appl.Probability, 12, 1000–1018.MathSciNetGoogle Scholar
  1081. Venkatakrishnan, K.S. (see K.P. Kistner).Google Scholar
  1082. Venugopalacharyulu, N. (see S.K. Srinivasan).Google Scholar
  1083. Verma, P.K. (see A. Chatterjee).Google Scholar
  1084. Venues, D. (1981). Optimal stochastic control under reliability constraints. Lect.Notes Contr.Inf.Sci., 36, 227–234.CrossRefGoogle Scholar
  1085. Vickson, R.G. (1980). Generalized value bounds and column reduction in finite Markov decision problems. Oper.Res., 28, 387–394.MathSciNetzbMATHCrossRefGoogle Scholar
  1086. Vinogradskaya, T.M. (see B.A. Geninson).Google Scholar
  1087. Vjazemskii, V.O. (1977). On the transformation of recurrent random flows of signals in the path of an information-measuring system. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 142-152 (Russian).Google Scholar
  1088. Vjugin, O.V. (1977). Asymptotic moments for branching processes close to critical ones. Theory Probab.Appl., 21, 825–833.CrossRefGoogle Scholar
  1089. Vojna, A.A. (see V.V. Anisimov).Google Scholar
  1090. Vojna, A.A. (1980). Occupation time of a fixed set of states and consolidation of stochastic processes with arbitrary phase space. Theory Probab.Math.Stat., 20, 35–44.zbMATHGoogle Scholar
  1091. Vojna, A.A. (1983). Asymptotic analysis of systems with a continuous component. Cybernetics, 18, 516–524.CrossRefGoogle Scholar
  1092. Vosvrda, M. (see C. Cvetanov).Google Scholar
  1093. Vranceanu, G. (1978). Models for non-euclidean hyperbolic geometry. Studii Cerc.Mat., 30, 477–478 (Roumanian).MathSciNetzbMATHGoogle Scholar
  1094. Vrieze, O.J. (see A. Hordijk).Google Scholar
  1095. Wagner, H.M. (1973). Principles of operations research. With applications to managerial decisions. Moskva Verlag Mir (Russian). Wakuta, K. (see S. Iwase & K. Tanaka).Google Scholar
  1096. Wakuta, K. (1981). Semi-Markov decision processes with incomplete state observation. J.Oper.Res.Soc.Japan, 24, 95–109.MathSciNetzbMATHGoogle Scholar
  1097. Wakuta, K. (1982). Semi-Markov decision processes with incomplete state observation. Discounted cost criterion. J.Oper.Res.Soc. Japan, 25, 351–362.MathSciNetzbMATHGoogle Scholar
  1098. Waldmann, K.-H. (1982). On two-state quality control under Markovian deterioration. Metrika, 29, 249–260.MathSciNetzbMATHCrossRefGoogle Scholar
  1099. Walrand, J. (see P. Varaiya).Google Scholar
  1100. Walrand, J. (1982). On the equivalence of flows in networks of queues. J.Appl.Probab., 19, 195–203.MathSciNetzbMATHCrossRefGoogle Scholar
  1101. Walrand, J. (1982). Poisson flows in single class open networks of quasireversible queues. Stochastic Processes Appl., 13, 293–303.MathSciNetzbMATHCrossRefGoogle Scholar
  1102. Walrand, J. (1983). A discrete-time queueing network. J.Appl.Probab., 20, 903–909.MathSciNetzbMATHCrossRefGoogle Scholar
  1103. Wanrooij, G.L. (see A. Hordijk).Google Scholar
  1104. Watanabe, Y. (see S. Nakajima).Google Scholar
  1105. Weeda, P.J. (1974). On the relationship between the cutting operation of generalized Markov programming and optimal stopping. Amsterdam Mathematisch Centrum, BW 39, 15 p.Google Scholar
  1106. Weeda, P.J. (1974). Some computational experiments with a special generalized Markov programming model. Amsterdam Mathematisch Centrum, BW 37, 25 p.Google Scholar
  1107. Weeda, P.J. (1976). Sensitive time and discount optimality in Markov renewal decision problems with instantaneous actions, Amsterdam Mathematisch Centrum, BW 59, 20 p.Google Scholar
  1108. Weeda, P.J. (1979). Finite generalized Markov programming. Amsterdam Mathematical Centre Tracts, 92.Google Scholar
  1109. Weiner, D. (see P. Purdue).Google Scholar
  1110. Weinfeld, R. (see P. Staniewski).Google Scholar
  1111. Weiss, E.N. (see M.A. Cohen).Google Scholar
  1112. Weiss, G. (see I. Meilijson).Google Scholar
  1113. Welch, P.D. (see S.S. Lavenberg).Google Scholar
  1114. Wessels, J. (see J.van Nunen).Google Scholar
  1115. White, C.C. III (see K.W. Kim).Google Scholar
  1116. White, C.C. III (1976). Procedures for the solution of a finite-horizon, partially observed, semi-Markov optimization problem. Operations Res., 24, 348–358.MathSciNetzbMATHCrossRefGoogle Scholar
  1117. White, C.C. III (1975). Cost equality and inequality results for a partially observed stochastic optimization problem. IEEE Trans. Systems Man Cybernetics SMC-5, 576-582.Google Scholar
  1118. White, D.J. (1978). Finite dynamic programming. An approach to finite Markov decision processes. John Wiley & Sons.Google Scholar
  1119. White, D.J. (1981). Isotone optimal policies for structured Markov decision processes. Eur.J.Oper.Res., 7, 396–402.zbMATHCrossRefGoogle Scholar
  1120. Whitt, W. (1980). Continuity of generalized semi-Markov processes. Math.Oper.Res., 5, 494–501.MathSciNetzbMATHCrossRefGoogle Scholar
  1121. Whitt, W. (1981). Comparing counting processes and queues. Adv.Appl. Probab. 13, 207–220.MathSciNetzbMATHCrossRefGoogle Scholar
  1122. Whitt, W. (1982). Approximating a point process by a renewal process. I: Two basic methods. Oper.Res., 30, 125–147.MathSciNetzbMATHGoogle Scholar
  1123. Whittaker, C. (see R.M. Feldman).Google Scholar
  1124. Wickwire, K.H. (1979). The Poisson disorder problem for large intensities. Int.J.Syst.Sci., 10, 1353–1358.MathSciNetzbMATHCrossRefGoogle Scholar
  1125. Wijngaard, J. (1982). On the calculation of the total expected cost in skip-free Markov chains: the matrix case. Operations Research, Proc.lOth Annual Meet., Goettingen, 449-453.Google Scholar
  1126. Wilcox, P. (see E. Ritchie).Google Scholar
  1127. Wilkins, C.W. (1980). First passage times of semi-Markov processes. Southeast Asian Bull.Math., 4, 94–100.MathSciNetzbMATHGoogle Scholar
  1128. Winston, W. (see S.D. Deshmukh).Google Scholar
  1129. Witsenhausen, H.S. (1975). On policy independence of conditional expectations. Inform, and Control, 28, 65–75.MathSciNetzbMATHCrossRefGoogle Scholar
  1130. Wlodarczyk, M. (see I. Kozniewska).Google Scholar
  1131. Wolff, M.-R. (1980). Dynamische Instandhaltungsplanung fuer einfache Produktionssysteme. Proc.Jahrestag Oper.Res., DGOR, Regensburg, 412-418.Google Scholar
  1132. Wolfson, D.B. (1976). A Lindeberg-type theorem. Stochastic Processes Appl., 4, 203–213.MathSciNetzbMATHCrossRefGoogle Scholar
  1133. Wolfson, D.B. (1977). Limit theorems for sums of a sequence of random variables defined on a Markov chain. J.Appl.Probab., 14, 614–640.MathSciNetzbMATHCrossRefGoogle Scholar
  1134. Woodroofe, M. (see H. Takahashi).Google Scholar
  1135. Woolford, S.W. (see P.S. Puri).Google Scholar
  1136. Wu, R. (1981). Distribution of a class of remainder times. Acta Math. Sin., 24, 494-503 (Chinese).Google Scholar
  1137. Wu, S.C. (1982). A semi-Markov model for survival data with covariates. Math.Biosci., 60, 197–206.MathSciNetzbMATHCrossRefGoogle Scholar
  1138. Wu, S.M. (see S.M. Pandit).Google Scholar
  1139. Yao, J.S. (see S. Liu Mu).Google Scholar
  1140. Yasuda, M. (1978). Semi-Markov decision processes with countable state space and compact action space. Bull.Math.Statist., 18, 35–54.MathSciNetzbMATHGoogle Scholar
  1141. Yasui, K. (see M. Motoori).Google Scholar
  1142. Yechiali, U. (see H. Mendelson).Google Scholar
  1143. Yeh, M. (see L.C. Thomas).Google Scholar
  1144. Young, D. (see B.J. Largay).Google Scholar
  1145. Yurenkov, K.E. (1976). A stochastic exchange model for a two-level-memory. Verojatn.Metody Kibern., 91-102 (Russian).Google Scholar
  1146. Yushkevich, A.A. (1973). On a class of strategies in general Markov decision models. Theory Probab.Appl., 18, 777–779.zbMATHCrossRefGoogle Scholar
  1147. Yushkevich, A.A. (1981). On controlled semi-Markov processes with average reward criterion. Lect.Notes Control Inf.Sci., 36, 235–238.MathSciNetCrossRefGoogle Scholar
  1148. Yushkevich, A.A. (1982). On the semi-Markov controlled models with the average reward criterion. Theory Probab.Appl., 26, 796–803.MathSciNetzbMATHCrossRefGoogle Scholar
  1149. Zaagman, W.H. (see G. Gestri).Google Scholar
  1150. Zaharin, O.M. (see I.I. Ezov).Google Scholar
  1151. Zaharin, O.M. (1979). An ergodic theorem for singly complex randomized semi-Markov processes. Ukr.Math.J., 30, 610–611.CrossRefGoogle Scholar
  1152. Zaharin, O.M. (1979). Complex randomized semi-Markov processes. Cybernetics, 14, 903–907.CrossRefGoogle Scholar
  1153. Zaharin, O.M. (1980). Some Markov models of systems with partial aftereffect. Cybernetics, 16, 175–188.CrossRefGoogle Scholar
  1154. Zak, Yu.A (see N.L. Kiryan).Google Scholar
  1155. Zakusilo, O.K. (1977). On the convergence of sums of a random number of random variables defined on an ergodic process. Theory Probab.Math.Stat., 9, 95-103. Zaslavskij, A.E. (1979). A multidimensional Markov renewal theorem and an infinite system of particles of countably many types. Theory Probab.Math.Stat., 18, 47–58.Google Scholar
  1156. Zasushin, V.S. (1978). Adaptive control of semi-Markov processes. Izvestija Akad.Nauk SSSR, tehn.Kibernet., 207-213 (Russian).Google Scholar
  1157. Zbyrko, M.D. (see V.N. Kuznetsov).Google Scholar
  1158. Zelen, M. (see S.W. Lagakos).Google Scholar
  1159. Zhutovskij, V.G. (see G.A. Chernomorov).Google Scholar
  1160. Zhilin, V.A. (see V.V. Kalashnikov).Google Scholar
  1161. Zirilli, F. (see F. Aluffi).Google Scholar
  1162. Zlatorunskii, N.K. (1974). Interaction of stochastic systems with finite state space. Kibernetika, Kiev, 35-39 (Russian).Google Scholar
  1163. Zieu, B.K. (1978). A scheme of improvement of a strategy by parts for semi-Markovian decision process. Vestnik Leningrad.Univ., 19, Mat.Men.Astron., 137-138 (Russian).Google Scholar
  1164. Zijlstra, M. (1981). Renewal replacement policies for one unit systems. Eur.J.Oper.Res., 8, 289–293.MathSciNetzbMATHCrossRefGoogle Scholar
  1165. Zoelzer, G.A. (1976). Anwendung linearer Programmierung bei Markov-Modellen fuer Personalstruktur-Probleme. Proc.Annual Meet.Oper. Res., DGOR, 70-76.Google Scholar
  1166. Zuckerman, D. (1978). Optimal stopping in a semi-Markov shock model. J.Appl.Probab., 15, 629–634.MathSciNet