Stationary regenerative systems

  • H. Kaspi
  • B. Maisonneuve


The theory of regenerative systems on the real line unifies the notions of strong Markov processes indexed by ℝ, recurrent events, regenerative processes, semi-Markov processes, etc.


Markov Process Invariant Measure Semi Group Renewal Theory Strong Markov Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Çinlar, Markov additive processes. II. Z.Wahrscheinlichkeitstheorie verw. Geb. 24 95–121 (1972).MATHCrossRefGoogle Scholar
  2. E. Çinlar, Introduction to Stochastic Processes. Prentice-Hall Inc. (1975).Google Scholar
  3. C. Dellacherie, Capacités et Processus Stochastiques. Springer-Verlag. Berlin, Heidelberg, New York (1972).MATHGoogle Scholar
  4. H. Kaspi, Excursions of Markov processes: an approach via Markov additive processes. Z.Wahrscheinlichkeitstheorie verw. Geb. 64 261–268 (1983).MathSciNetCrossRefGoogle Scholar
  5. H. Kaspi, On invariant measures and dual excursions of Markov processes. Z.Wahrscheinlichkeitstheorie verw. Geb. 66 185–204 (1984).MathSciNetMATHCrossRefGoogle Scholar
  6. H. Kaspi and B. Maisonneuve, Regenerative systems on the real line. Forthcoming paper.Google Scholar
  7. B. Maisonneuve, Ensembles régénératifs de la droite. Z.Wahrscheinlichkeitstheorie verw. Geb. 63 501–510 (1983).MathSciNetMATHCrossRefGoogle Scholar
  8. M.I. Taksar, Regenerative sets on real line. Séminaire de Probabilités XIV. Lecture Notes in Mathematics No 784. (1980) Springer Verlag, Berlin, Heidelberg, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • H. Kaspi
    • 1
  • B. Maisonneuve
    • 2
  1. 1.TechnionHaifaIsrael
  2. 2.IMSSGrenobleFrance

Personalised recommendations