Stochastic processes with an embedded point process and their application to system reliability analysis

  • Peter Franken
  • Arnfried Streller

Abstract

In applied probability it is fairly familiar to investigate the temporal behaviour of a certain system considered by means of some appropriately chosen (in general random) embedded epochs. This is the idea of the famous method of an embedded Markov chain due to A.Ya. Khinchin and D.G. Kendall. Furthermore, several well-known classes of stochastic processes such as regenerative, semi-Markov and semi-regenerative processes are bases on the concept of embedded points.

Keywords

Point Process System Reliability Sojourn Time Ergodic Theorem Marked Point Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arndt, K. and P. Franken (1979). Construction of a class of stationary processes with applications in reliability, Zast. Matem. 16, 379–393.MathSciNetMATHGoogle Scholar
  2. Athreya, K.B., D. McDonald, P. Ney (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains, Ann. Prob. 6, 788–797.MathSciNetMATHCrossRefGoogle Scholar
  3. Barbour, A.D. and R. Schassberger (1981). Insensitive average residence times in generalized semi-Markov processes, AAP 13, 846–859.MathSciNetGoogle Scholar
  4. Beichelt, F. and P. Franken (1983). Zuverlässigkeit und Instandhaltung. Verlag Technik, Berlin.Google Scholar
  5. Çinlar, E. (1975). Introduction to stochastic processes. Prentice Hall, Englewood Cliffs, New York.MATHGoogle Scholar
  6. Cohen, J.W. (1976). On regenerative processes in queueing theory. Lect. Notes in Econ. Math. Systems, 121, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  7. Franken, P., D. König, U. Arndt and V. Schmidt (1982). Queues and point processes. Akademie-Verlag, Berlin, 1981, Wiley, New York.MATHGoogle Scholar
  8. Franken, P. and A. Streller (1978). A general method for calculation of stationary interval reliability of complex systems with repair. Elektron. Informationsverarb. Kybern. (EIK) 14, 283–290.MathSciNetMATHGoogle Scholar
  9. Franken P. and A. Streller (1979). Stationary generalized regenerative processes. Theory Prob.Applic. 24, 78–90.MathSciNetMATHGoogle Scholar
  10. Franken, P. and A. Streller (1980). Reliability analysis of complex repairable systems by means of marked point processes, JAP, 17, 154–167.MathSciNetMATHGoogle Scholar
  11. Jankiewicz, M. and T. Rolski (1977). Piecewise Markov processes on a general state space, Zast. Matem., 15, 421–436.MathSciNetMATHGoogle Scholar
  12. Jansen, U. (1984). Conditional expected sojourn times in insensitive queueing systems.Google Scholar
  13. Keilson, J. (1974). Monotonicity and convexity in systems survival functions and metabolic disappearance curves. in: Reliability and Biometry, SIAM, Philadelphia.Google Scholar
  14. König, D., K. Matthes and K. Nawrotzki (1971). Unempfindlichkeitseigenschaften von Bedienungsprozessen. Supplement to B.W.Google Scholar
  15. Gnedenko, I.N. Kovalenko, Einführung in die Bedienungstheorie. Akademie-Verlag, Berlin.Google Scholar
  16. Kuczura, A. (1973). Piecewise Markov processes, SIAM J.Appl.Math., 24, 169–181.MathSciNetMATHCrossRefGoogle Scholar
  17. Natvig, B. and A. Streller (1984). The steady state behaviour of multistate monotone systems. (to appear in JAP).Google Scholar
  18. Nawrotzki K. (1975). Markovian random marked sequences and their applications in queueing theory (in Russian). Math.Operations-forsch. Statist., 6, 445–477.MathSciNetMATHCrossRefGoogle Scholar
  19. Port, S.C. and C.J. Stone (1973). Infinite particle systems. Trans. Amer. Math. Soc., 178, 307–340.MathSciNetMATHCrossRefGoogle Scholar
  20. Pyke, R. and R. Schaufele (1966). The existence and uniqueness of stationary measures for Markov renewal processes. Ann. Math. Stat., 37, 1439–1462.MathSciNetMATHCrossRefGoogle Scholar
  21. Rolski, T. (1981). Stationary random processes associated with point processes. Lect. Notes in Statistics, 5, Springer-Verlag, New York/Heidelberg/Berlin.Google Scholar
  22. Streller, A. (1979). Stationary interval reliability of a doubled system with renewal and prophylactic (in Russian), Izv.Akad. Nauk SSSR, Tech.Kybern. 3, 98–103.MathSciNetGoogle Scholar
  23. Streller, A. (1982). On stochastic processes with an embedded marked point process. Math. Operationsforsch. Stat., 13, 561–576.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Peter Franken
    • 1
  • Arnfried Streller
    • 1
  1. 1.Humboldt-Universität zu BerlinBerlinDeutschland

Personalised recommendations