Microdosimetry and Its Application to Biological Processes

  • Marco Zaider
  • Harald H. Rossi


Microdosimetry is the study of energy deposition processes in biological media with particular accent on phenomena correlated with the physical aspects of the radiation action on living systems. As such, microdosimetry is geared toward understanding the basic mechanisms in the initiation stage of radiation action and, as a corollary, defining a set of quantities characterizing the radiation fields that are most directly related to the biological effect, all other conditions being the same.


Energy Deposition Relative Biological Effectiveness Reference Volume Lineal Energy Sensitive Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. H. Rossi, Microscopic energy distribution in irradiated matter, in Radiation Dosimetry, Vol. 1, pp. 43–92, Academic, New York (1967).Google Scholar
  2. 2.
    R. Dvorak and W. Gross, Event distributions from monoenergetic photons, Annual Report on Research Project, pp. 68–77, Radiological Research Laboratory, Columbia University, New York (1974). (Available as COO-3243-3 from National Technical Information Service, Springfield, Virginia 22161.)Google Scholar
  3. 3.
    H. I. Amols, J. F. Dicello, and T. F. Lane, Microdosimetry of negative pions, in Fifth Symposium on Microdosimetry, Verbania Pallanza, Italy (J. Booz, H. G. Ebert, and B. G. R. Smith, eds.), pp. 911–928, Commission of the European Communities, Luxembourg (1976).Google Scholar
  4. 4.
    D. Srdoc, L. J. Goodman, S. A. Marino, R. E. Mills, M. Zaider, and H. H. Rossi, Microdosimetry of monoenergetic neutron radiation, in Proceedings of the Seventh Symposium om Microdosimetry, (J. Booz, H. G. Ebert, and B. G. R. Smith, eds.), pp. 765–774 Harwood, Oxford (1980).Google Scholar
  5. 5.
    M. Zaider, J. F. Dicello, D. Brenner, M. Takai, M. R. Raju, and J. Howard, Microdosimetry of range-modulated beams of heavy ions I. Determination of the yield of projectile fragments from microdosimetric spectra for Ne10 beams, Radiat. Res., 81, 511–520 (1980).Google Scholar
  6. 6.
    A. M. Kellerer, Mikrodosimetrie, Bericht B-1 Gesellschaft für Strahlenforschung, Neuherberg-München (1968).Google Scholar
  7. 7.
    ICRU, Radiation Quantities and units, Report 33, International Commission on Radiation Units and Measurements, Washington, D.C. (1980).Google Scholar
  8. 8.
    ICRU, Radiation Quantities and units, Report 19, International Commission on Radiation Units and Measurements, Washington, D.C. (1971).Google Scholar
  9. 9.
    A. Cauchy, Memoire sur la rectification des courbes et la quadrature des surfaces courbes (1850), in Oeuvres Completes, Vol. 2, Gauthier Villard, Paris (1908).Google Scholar
  10. 10.
    L. Landau, On the energy loss of fast charged particles, J. Phys. U.S.S.R., 8, 201–205 (1944).Google Scholar
  11. 11.
    P. V. Vavilov, Ionization losses of high-energy heavy particles, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 920–923 (1957).Google Scholar
  12. 12.
    R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York (1978).Google Scholar
  13. 13.
    A. M. Kellerer and D. Chmelevsky, Concepts of microdosimetry I. Quantities, Radiat. Environ. Biophys., 12, 61–69 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    A. M. Kellerer and D. Chmelevsky, Concepts of microdosimetry II. Probability distributions of the microdosimetric variables, Radiat. Environ. Biophys., 12, 205–216 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    A. M. Kellerer and D. Chmelevsky, Concepts of microdosimetry III. Mean values of the microdosimetric distributions, Radiat. Environ. Biophys., 12, 321–335 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    D. E. Lea, Action of Radiation on Living Cells, 2nd ed., Cambridge University Press, Cambridge (1962).Google Scholar
  17. 17.
    M. Zaider, Proximity function for low energy electrons in nitrogen—Application to Iodine-125, Annual Report on Research Project, Radiological Research Laboratory, Columbia University, New York (1979–1980). (Available as COO-4733-3 from National Technical Information Service, Springfield, Virginia 22161.).Google Scholar
  18. 18.
    M. G. Kendall and P. A. P. Moran, Geometrical Probability, Griffin, London (1963).Google Scholar
  19. 19.
    A. M. Kellerer and H. H. Rossi, A generalized formulation of dual radiation action, Radiat. Res., 75, 471–488 (1978).CrossRefGoogle Scholar
  20. 20.
    D. Chmelevsky, A. M. Kellerer, M. Terissol, and J. P. Patau, Proximity functions for electrons up to 10 keV, Radiat. Res., 84, 219–238 (1980).CrossRefGoogle Scholar
  21. 21.
    M. Zaider, K. Hanson, and G. N. Minerbo, Algorithms for determining the proximity distribution from variance measurement, Annual Report on Research Project, Radiological Research Laboratory, Columbia University, New York (1979–1980). (Available as COO-4733-3 from National Technical Information Service, Springfield, Virginia 22161.)Google Scholar
  22. 22.
    L. G. Bengtsson and L. Lindborg, Comparison of pulse height analysis and variance measurements for the determination of dose mean specific energy, in Proceedings of the 4th Symposium on Microdosimetry, p. 823, EUR 5122 d-e-f (1974).Google Scholar
  23. 23.
    U. Fano, Note on the Bragg-Gray cavity principle for measuring energy dissipation, Radiat. Res. 1, 237 (1954).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Bichsel, Charged-particle interactions, in Radiation Dosimetry, Vol. 1, pp. 157–224, Academic, New York (1967).Google Scholar
  25. 25.
    J. W. Boag, Ionization chambers, in Radiation Dosimetry (G. J. Hine and G. L. Brownell, eds.), Academic, New York (1956).Google Scholar
  26. 26.
    P. J. Campion, The operation of proportional counters at low pressures for microdosimetry, Phys. Med. Biol. 16, 611 (1971).PubMedCrossRefGoogle Scholar
  27. 27.
    P. J. Campion, Some comments on the operation of proportional counters, in Proceedings of the 3rd Symposium on Microdosimetry, Stresa, Italy, EUR 4810, (H. G. Ebert, ed.) (1972).Google Scholar
  28. 28.
    J. B. Smathers, V. A. Otte, A. R. Smith, P. R. Almond, F. J. Attix, J. J. Spokas, W. M. Quam, and L. F. Goodman, Composition of A-150 tissue-equivalent plastic, Med. Phys. 4, 74 (1977).Google Scholar
  29. 29.
    D. Srdoc, Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi-counters, Rad. Res. 43, 302 (1970).CrossRefGoogle Scholar
  30. 30.
    W. A. Glass and L. A. Braby, Gas pressure control for flow type proportional counters, Proceedings N. W. Lab. Ann. Rep. BNWL715, Part 2, p. 215 (1967).Google Scholar
  31. 31.
    B. Forsberg, M. Jensen, L. Lindborg, and G. Samuelson, Determination of the dose mean specific energy for conventional x-rays by variance measurements, Proceedings of the 6th Symposium on Microdosimetry, Brussels (Belgium), EUR 6064 DE-EN-FR (1978).Google Scholar
  32. 32.
    A. M. Kellerer, An assessment of wall effects in microdosimetric measurements, Radiat. Res. 47, 377 (1971).PubMedCrossRefGoogle Scholar
  33. 33.
    W. A. Glass and W. A. Gross, Wall-less detectors in microdosimetry, in Radiation Dosimetry, Suppl. 1, pp. 221–260, Academic, New York (1972).Google Scholar
  34. 34.
    R. C. Rodgers, J. F. Dicello, and W. Gross, The biophysical properties of 3.9-GeV nitrogen ions II. Microdosimetry, Radiat. Res., 54, 12–23 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    M. R. Raju and C. Richman, Negative pion radiotherapy: Physical and radiobiological aspects, Curr. Top. Radiat. Res. Q., 8, 159–233 (1972).Google Scholar
  36. 36.
    G. Burger, E. Maier, and A. Morhart, Radiation quality and its relevancy in neutron radiotherapy, in: Proceedings of the Sixth Symposium on Microdosimetry (J. Booz and H. G. Ebert, eds.), EUR 6064 DE-EN-FR, Brussels, Belgium (1978).Google Scholar
  37. 37.
    J. F. Dicello, private communication.Google Scholar
  38. 38.
    B. Rossi, High-Energy Particles, Prentice-Hall, New York (1952).Google Scholar
  39. 39.
    P. Kliauga and R. Dvorak, Microdosimetric measurements of ionization by mono-energetic photons, Radiat. Res., 73, 1–20 (1978).PubMedCrossRefGoogle Scholar
  40. 40.
    U. Fano, Ionization yield of radiation, II. The fluctuations of the number of ions, Phys. Rev., 72, 26–29 (1947).CrossRefGoogle Scholar
  41. 41.
    U. L. R. Lindborg, Microdosimetry in high energy electron and 60Co gamma ray beams for radiation therapy Microdosimetry in high energy electron and 60Co gamma ray beams for radiation therapy, Proceedings of the Fourth Symposium on Microdosimetry, Verbania Pallanta, Italy, 24-28, EUR 5122 d-e-f (1973).Google Scholar
  42. 42.
    J. A. Auxier, W. S. Snyder, and T. D. Jones, Neutron interaction and penetration in tissue, in Radiation Dosimetry, Vol. 1, pp. 275–315, Academic, New York (1967).Google Scholar
  43. 43.
    S. B. Curtis and W. Schimmerling, Nuclear physics of accelerated heavy ions, Report LBL-5610, pp. 36–48, University of California, Berkeley (1977).Google Scholar
  44. 44.
    A. Chatterjee, C. A. Tobias, and J. T. Lyman, Nuclear fragmentation in therapeutic and diagnostic studies with heavy ions, in Spallation Nuclear Reactions and Their Applications (Shen/ Merker, eds.), p. 169, D. Reidel, Dordrecht, Holland (1976).CrossRefGoogle Scholar
  45. 45.
    H. H. Heckman, H. J. Crawford, D. E. Greiner, P. J. Lindstrom, and L. W. Wilson, Central collisions produced by relativistic heavy ions in nuclear emulsions, Phys. Rev. C 17, 1651–1664(1978).CrossRefGoogle Scholar
  46. 46.
    J. B. Cumming, P. E. Haustein, R. W. Stoenner, L. Mausner, and R. A. Naumann, Spallation of Cu by 3.9-GeV 14Neons and 3.9-GeV Protons, Phys. Rev. C, 10, 739–755 (1974).CrossRefGoogle Scholar
  47. 47.
    H. H. Heckman, D. E. Greiner, P. J. Lindstrom, and H. Shwe, Fragmentation of 4He, 12C, 14N, and 16O nuclei in nuclear emulsion at 2.1 GeV/nucleon, Phys. Rev. C, 17, 1735–1747 (1978).CrossRefGoogle Scholar
  48. 48.
    P. J. Kliauga, R. D. Colvett, Y. M. P. Lam, and H. H. Rossi, The relative biological effectiveness of 160-Mev protons. I. Microdosimetry, Int. J. Radiat. Oncol. Biol. Phys., 4, 1001–1008 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    K. G. Zimmer, Studies on Quantitative Biology, Hafner, New York (1961).Google Scholar
  50. 50.
    M. M. Elkind and G. F. Whitmore, The Radiobiology of Cultured Mammalian Cells, Gordon and Breach, New York (1967).Google Scholar
  51. 51.
    G. W. Barendsen, Mechanism of action of different ionizing radiations on the proliferative capacity of mammalian cells, in Theoretical and Experimental Biophysics (A. Cole, ed.), Vol. 1, pp. 167–231, Dekker, New York (1967).Google Scholar
  52. 52.
    P. W. Todd, Reversible and irreversible effects of ionizing radiations on the reproductive integrity of mammalian cells cultured in vitro, thesis, University of California, Lawrence Radiation Laboratory UCRL 11614 (1964).Google Scholar
  53. 53.
    A. M. Kellerer and H. H. Rossi, The theory of dual radiation action, Curr. Top. Radiat. Res. Q., 8, 85–158 (1972).Google Scholar
  54. 54.
    A. M. Kellerer, Y. P. Lam, and H. H. Rossi, Biophysical studies with spatially correlated ions. 4. Analysis of cell survival data for diatomic deuterium, Radiat. Res., 83, 511–528 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    J. L. Bateman, H. H. Rossi, A. M. Kellerer, C. V. Robinson, and V. P. Bond, Dose dependence of fast neutron RBE for lens opacification in mice, Radiat. Res., 51, 381–390 (1972).PubMedCrossRefGoogle Scholar
  56. 56.
    C. J. Shellabarger, A. M. Kellerer, H. H. Rossi, L. J. Goodman, R. D. Brown, R. E. Mills, A. R. Rao, J. P. Shanley, and V. P. Bond, Rat mammary carcinogenesis following neutron or x-irradiation, in Biological Effects of Neutron Irradiation; IAEA, Vienna (1974).Google Scholar
  57. 57.
    H. H. Rossi, The effects of small doses of ionizing radiation: Fundamental biophysical characteristics, Radiat. Res., 71, 1–8 (1977).PubMedCrossRefGoogle Scholar
  58. 58.
    R. L. Ullrich, M. C. Jernigan, and L. M. Adams, Induction of lung tumors in RFM mice after localized exposures to x-rays or neutrons, Radiat. Res., 80, 464–473 (1979).PubMedCrossRefGoogle Scholar
  59. 59.
    A. A. Awa, Chromosome aberrations in somatic cells, J. Radiat. Res. Suppl. 16, 122–131 (1975).CrossRefGoogle Scholar
  60. 60.
    M. T. Biola, R. Lego, G. Ducatez, G. Dacher, and M. Bourguignon, Formation de chromosomes dicentrique dans les lumphocytes humains soumis in vitro a un flux de rayonnement mixte (gamma, neutrons), in Advances in Physical and Biological Radiation Detectors, pp. 633-645, IAEA (1971).Google Scholar
  61. 61.
    A. H. Sparrow, A. G. Underbrink, and H. H. Rossi, Mutations induced in Tradescantia by small doses of x-rays and neutrons, Analysis of dose-response curves, Science, 176, 916–918 (1972).PubMedCrossRefGoogle Scholar
  62. 62.
    E. J. Hall, H. H. Rossi, A. M. Kellerer, L. J. Goodman, and S. Marino, Radiobiological studies with monoenergetic neutrons, Radiat. Res., 54, 431–443 (1973).PubMedCrossRefGoogle Scholar
  63. 63.
    M. Zaider and J. F. Dicello, RBEOER: A Fortran program for the computation of RBEs, OERs, survival ratios, and the effects of fractionation using the theory of dual radiation action, Report LA-7196-MS, Los Alamos Scientific Laboratory (1978).Google Scholar
  64. 64.
    R. Railton, R. C. Lawson, and D. Porter, Interaction of x-ray and neutron effects on the proliferative capacity of Chinese hamster cells, Int. J. Radiat. Biol., 27, 75–82 (1975).CrossRefGoogle Scholar
  65. 65.
    R. E. Durand and P. L. Olive, Irradiation of multi-cell spheroids with fast neutrons versus x-rays: A qualitative difference in sub-lethal damage repair capacity or kinetics, Int. J. Radiat. Biol., 30, 583–592 (1976).CrossRefGoogle Scholar
  66. 66.
    F. Q. Ngo, A. Han, and M. M. Elkind, On the repair of sub-lethal damage in V79 Chinese hamster cells resulting from irradiation with fast neutrons or fast neutrons combined with x-rays, Int. J. Radiat. Biol., 32, 507–511 (1977).CrossRefGoogle Scholar
  67. 67.
    F. Q. H. Ngo, A. Han, H. Utsumi, and M. M. Elkind, Comparative radiobiology of fast neutrons: Relevance to radiotherapy and basic studies, Int. J. Radiat. Oncol. Biol. Phys., 3, 187–193 (1977).PubMedCrossRefGoogle Scholar
  68. 68.
    S. Hornsey, U. Andreozzi, and P. R. Warren, Sublethal damage in cells of the mouse gut after mixed treatment with x-rays and fast neutrons, Br. J. Radiol., 50, 513–517 (1977).PubMedCrossRefGoogle Scholar
  69. 69.
    F. Q. H. Ngo, E. A. Blakely, and C. A. Tobias, Do sublethal lesions and repair occur after high-LET radiation?, Report LBL-7454, Lawrence Berkeley Laboratory, University of California (1979).Google Scholar
  70. 70.
    R. Bird, M. Zaider, H. H. Rossi, and E. J. Hall, The sequential irradiation of mammalian cells with x-rays and charged particles of high LET, Radiat. Res., 93, 444–452 (1983).PubMedCrossRefGoogle Scholar
  71. 71.
    M. Zaider and H. H. Rossi, The synergistic effect of different radiations, Radiat. Res., 83, 732–739 (1980).PubMedCrossRefGoogle Scholar
  72. 72.
    J. L. Bateman, H. A. Johnson, V. P. Bond, and H. H. Rossi, The dependence of RBE on the energy of fast neutrons for spermatogonia depletion in mice, Radiat. Res., 35, 86–101 (1968).PubMedCrossRefGoogle Scholar
  73. 73.
    H. H. Rossi, Comment on the somatic effects section of the BEIR III report, Radiat. Res., 84, 395–406 (1980).PubMedCrossRefGoogle Scholar
  74. 74.
    A. M. Kellerer and H. H. Rossi, Biophysical aspects of radiation carcinogenesis, CANCER, 2nd edition (F. Becker, ed.), pp. 569–616, Plenum, New York (1982).Google Scholar
  75. 75.
    National Council on Radiation Protection and Measurements, Report 17, Permissible dose from external sources of ionizing radiation (1954) including Maximum permissible exposure to man, Addendum to National Bureau of Standards Handbook 59 (1958).Google Scholar
  76. 76.
    H. H. Rossi, A proposal for revision of quality factor, Rad. Environ. Biophys., 14, 275–283 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Marco Zaider
    • 1
  • Harald H. Rossi
    • 1
  1. 1.Radiological Research Laboratory, Department of Radiology, Cancer Center/Institute of Cancer ResearchColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations