Advertisement

Recent Advances in Electron and Photon Dosimetry

  • Hans Svensson
  • Anders Brahme

Abstract

The possibilities to improve radiation therapy have increased during recent years, not only because of the use of new or improved tools such as computed tomography and dose planning, and high-quality electron and photon beams from therapy accelerators, but also because of increased knowledge in fields like clinical radiation biology about dose fractionation and dose-response relations. These new developments increase the demand for accurate dosimetry as illustrated by the following examples.

Keywords

Ionization Chamber Photon Beam Angular Spread Effective Point ICRU Report 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abou-Mandour and D. Harder, Scheinbare Reflexion schneller Elektronen bei streifendem Einfall, Z. Naturforsch. 30a, 265 (1975).Google Scholar
  2. 2.
    P. R. Almond and H. Svensson, Ionization chamber dosimetry for photon and electron beams, Ada Radiol. Ther. Phys. Biol. 16, 177 (1977).Google Scholar
  3. 3.
    A. R. Anderson, A calorimetric determination of the oxidation yield of the Fricke dosimeter at high dose rates of electrons, J. Phys. Chem. 66, 180 (1962).Google Scholar
  4. 4.
    P. Andreo, Monte-Carlo simulation of electron transport in water. FANZ 80-3. Department of Nuclear Physics, University of Zaragoza, Spain (1980).Google Scholar
  5. 5.
    P. Andreo and A. Brahme, Mean energy in electron beams, Med. Phys. 8, 682 (1981).PubMedGoogle Scholar
  6. 6.
    P. Andreo and A. Brahme, Dosimetry and quality specifications of high energy photon beams: 1. Theoretical background, submitted to Phys. Med. Biol. (1985).Google Scholar
  7. 7.
    J. C. Ashley, Density effect in liquid water, Radiat. Res. 89, 32 (1982).Google Scholar
  8. 8.
    F. M. Attix, The partition of kerma to account for bremsstrahlung, Health Phys. 36, 347 (1979).PubMedGoogle Scholar
  9. 9.
    M. J. Berger and S. M. Seltzer, Tables of energy losses and ranges of electrons and positrons, in NAS-NRC publication 1133, National Academy of Sciences—National Research Council, Washington, pp. 205-268; also NASA Publication No. SP-3012, National Aeronautics and Space Administration (1964).Google Scholar
  10. 10.
    M. J. Berger and S. M. Seltzer, Additional stopping power and range tables for protons, mesons and electrons, NASA SP-3036, National Aeronautics and Space Administration (1966).Google Scholar
  11. 11.
    M. J. Berger and S. M. Seltzer, Stopping powers and ranges of electrons and positrons, NBS IR 82-2550 (1982a).Google Scholar
  12. 12.
    M. J. Berger and S. M. Seltzer, private communication (1982b).Google Scholar
  13. 13.
    M. J. Berger, S. M. Seltzer, S. R. Domen, and P. J. Lamperti, Stopping-power ratios for electron dosimetry with ionization chamber, in Biological dosimetry, IAEA-SM-193139, p. 594 (1975).Google Scholar
  14. 14.
    M. Bernard, Etude de l’ionisation au voisinge des interfaces planes situées entre deux milieux de nombres atomiques differents soumis aux rayons gamma de Cobalt 60 et aux rayons x d’un betatron de 20 MV, thesis, Université de Paris (1964).Google Scholar
  15. 15.
    G. Bertilsson, Electron scattering effects on absorbed dose measurements with LiF-dosemeters, thesis, University of Lund (1975).Google Scholar
  16. 16.
    M. Boutillon, Some remarks concerning the measurement of kerma with a cavity ionization chamber, Bureau International des Poids et Mesures, CCEMRI (I)/77-114 (1977).Google Scholar
  17. 17.
    M. Boutillon, Determination of absorbed dose in a water phantom from the measurement of absorbed dose in a graphite phantom, Bureau International des Poids et Mesures, CCEMRI (I)/81-6, Rapport BIPM-81/2 (1981).Google Scholar
  18. 18.
    M. Boutillon and M.-T. Niatel, A study of graphite cavity chamber for absolute exposure measurements of 60Co gamma rays, Metrologia 9, 139 (1973).Google Scholar
  19. 19.
    W. H. Bragg, Studies in radioactivity, Macmillan, New York, p.94 (1912).Google Scholar
  20. 20.
    A. Brahme, Simple relations for the penetration of high energy electron beams in matter, SSI 1975-11, National Institute of Radiation Protection, Stockholm (1975).Google Scholar
  21. 21.
    A. Brahme, Restricted energy absorption coefficients for use in dosimetry. Rad. Res. 73, 420 (1978).Google Scholar
  22. 22.
    A. Brahme, Correction of measured distribution for finite extension of the detector, Strahlentherapie 157, 258 (1981).PubMedGoogle Scholar
  23. 23.
    A. Brahme, Physics of electron beam penetration: Fluence and absorbed dose, in Proc. Symp. Elec. Dosimetry and Therapy, AAPM (B. Paliwal, ed.), p. 45 (1982).Google Scholar
  24. 24.
    A. Brahme, Correction for the angular dependence of a detector in electron and photon beams, accepted for publication in Acta Radiol. Oncol 24, 301 (1983).Google Scholar
  25. 25.
    A. Brahme and I. Lax, Absorbed dose distribution of electron beams in uniform and inhomogeneous media, Acta Radiol. Suppl. 364, 26 (1983).Google Scholar
  26. 26.
    A. Brahme and H. Svensson, Specification of electron beam quality from central axis depth absorbed dose distribution, Med. Phys. 3, 96 (1975).Google Scholar
  27. 27.
    A. Brahme and H. Svensson, Radiation beam characteristics of a 22 MeV microtron, Acta Radiol. Oncol. 18, 244 (1979).Google Scholar
  28. 28.
    A. Brahme, G. Hultén, and H. Svensson, Electron depth absorbed dose distribution for a 10 MeV clinical microtron, Phys. Med. Biol. 20, 39 (1975).PubMedGoogle Scholar
  29. 29.
    A. Brahme, T. Kraepelien, and H. Svensson, Electron and photon beams, from a 50 MeV racetrack microtron, Acta Radiol. Oncol. 19, 305 (1980).PubMedGoogle Scholar
  30. 30.
    R. K. Broszkiewicz and Z. Bulhak, Errors in ferrous sulphate dosimetry, Phys. Med. Biol. 15, 549 (1970).PubMedGoogle Scholar
  31. 31.
    P. R. J. Burch, Cavity ion chamber theory, Rad. Res. 3, 361 (1955).Google Scholar
  32. 32.
    T. E. Burlin, Cavity-chamber theory, in Radiation dosimetry, Vol. 1 (F. H. Attix and W. C. Roesch, eds.), p. 331, Academic, New York (1968).Google Scholar
  33. 33.
    T. A. Carlsson, Photoelectron and Auger Spectroscopy, Plenum, New York (1975).Google Scholar
  34. 34.
    J. Casanovas, J. P. Patau, U. J. Mathieu, and D. Blanc, Comparaison entre l’ionisation produite dans le volume sensible d’une chambre d’ionisation à diélectrique et l’énergie qui y est déposée, calculée par la méthode de Monte-Carlo, dans le cas d’irradiation par des électrons monocinétiques de 1.5 et 1.9 MeV, in Third symposium on microdosimetry, Stresa, Italy, EUR 4810 d-f-e, p. 571 (1971).Google Scholar
  35. 35.
    J. Casanovas, Etude de la conduction induite par des rayonnements à transferts linéiques d’énergie très different dans certains liquides organiques non polaires, thesis, Université Paul Sabatier, Toulouse, France (1975).Google Scholar
  36. 36.
    R. S. Caswell, Deposition of energy by neutrons in spherical cavities, Rad. Res. 27, 92 (1966).Google Scholar
  37. 37.
    E. Cottens, Geabsorbeerde dosis kalorimetrie bij hog energie elektronenbundels en onderzoek van de ijzersulfaat dosimeter, thesis, University of Gent (1979).Google Scholar
  38. 38.
    E. Cottens, A. Janssens, G. Eggermont, and R. Jacobs, Absorbed dose calorimetry with a graphite calorimeter and G-value determinations for the Fricke dosemeter in high energy electron beams, IAEA-SM-249/32 (1980), p. 488.Google Scholar
  39. 39.
    G. W. Dolphin, N. H. Gale, and A. L. Bradshaw, Investigations of high energy electron beams for use in therapy, Br. J. Radiol. 32, 13 (1959).PubMedGoogle Scholar
  40. 40.
    S. R. Domen, Absorbed dose water calorimeter, Med. Phys. 7, 157 (1980).PubMedGoogle Scholar
  41. 41.
    S. R. Domen, An absorbed dose water calorimeter: Theory, design and performance, J. Res. N.B.S. 87, 211 (1982).Google Scholar
  42. 42.
    S. R. Domen, A polystyrene-water calorimeter, J. Res. N.B.S. 88, 373 (1983).Google Scholar
  43. 43.
    S. R. Domen and P. J. Lamperti, Comparisons of calorimetric and ionometric measurements in graphite irradiated with electrons from 15 to 50 MeV, Med. Phys. 3, 294 (1976).PubMedGoogle Scholar
  44. 44.
    J. J. Duderstadt and W. R. Martin, Transport Theory, Wiley, New York (1979).Google Scholar
  45. 45.
    A. Dutreix, Problems of high energy x-ray beam dosimetry, in HIgh Energy Photons and Electrons (S. Kramer, ed.), Wiley, New York (1976).Google Scholar
  46. 46.
    J. Dutreix and A. Dutreix, Etude comparée d’une série de chambres d’ionisation dans des faisceaux d’électron de 20 et 10 MeV, Biophysik 3, 249 (1966).PubMedGoogle Scholar
  47. 47.
    P. J. Ebert, A. F. Luzon, and E. M. Lent, Transmission and backscattering of 4 to 12 MeV electrons, Phys. Rev. 183, 422 (1969).Google Scholar
  48. 48.
    M. Ehrlich and C. G. Soares, Measurement assurance studies of high-energy electron and photon dosimetry in radiation-therapy applications, in IAEA Technical Report Series. Intercomparison Procedures in the Dosimetry of High-Energy X-Ray and Electron Beams (1979).Google Scholar
  49. 49.
    S. C. Ellis, The dissemination of absorbed dose standards by chemical dosimetry, Rad. Sci. 30, (1974). National Physical Laboratory.Google Scholar
  50. 50.
    S. C. Ellis, J. H. Barrett, P. H. G. Sharpe, and M.-T. Niatel, Preliminary report on an intercomparison of Fricke dosimetry systems. Bureau International des Poids et Mesures, CCEMRI (1)/31-18 (1981).Google Scholar
  51. 51.
    G. Failla, Dosimetry of ionizing radiation, Progr. Nucl. Energy Ser. VII, 147 (1956).Google Scholar
  52. 52.
    U. Fano, Introductory remarks on the dosimetry of ionizing radiations, Rad. Res. 1, 3 (1954).Google Scholar
  53. 53.
    H. Feist, private communication (1980).Google Scholar
  54. 54.
    D. M. Galbraith, J. A. Rawlinson, and P. Munro, Dose errors due to charge storage in electron irradiated plastic phantom, Med. Phys., 11, 253 (1984).Google Scholar
  55. 55.
    J. Geisseloder, K. Koepke, and J. S. Laughlin, Calorimetric determination of absorbed dose and G Fe+++of the Fricke dosimeter with 10 MeV and 20 MeV electrons, Rad. Res. 20, 423 (1963).Google Scholar
  56. 56.
    M. Goitein, A technique for calculating the influence of thin inhomogeneities on charged particle beams, Med. Phys. 5, 258 (1978).PubMedGoogle Scholar
  57. 57.
    E. L. Goldwasser, F. E. Mills, and A. O. Hanson, Ionization loss and straggling of fast electrons, Phys. Rev. 88, 1137 (1952).Google Scholar
  58. 58.
    L. H. Gray, The absorption of penetrating radiation, Proc. R. Soc. (London) Ser. A 122, 647 (1929).Google Scholar
  59. 59.
    L. H. Gray, Ionization method for the absolute measurement of gamma-ray energy, Proc. R. Soc. (London) Ser. A 156, 578 (1936).Google Scholar
  60. 60.
    J. R. Greening, Dose conversion factors for electrons, Phys. Med. Biol. 19, 746 (1974).Google Scholar
  61. 61.
    J. R. Greening, Fundamentals of radiation dosimetry, Medical Physics Handbooks 6, Adam Hilger Ltd., Bristol, in collaboration with the HPA (1981).Google Scholar
  62. 62.
    D. Harder, Berechnung der Energiedosis aus Ionisationsmessungen bei Sekundärelektronen-Gleichgewicht, Symposium on High-Energy Electrons 1964. (Zuppinger and Poretti, eds.) p. 40, Springer, Berlin (1965).Google Scholar
  63. 63.
    D. Harder, Einfluss der Vielfachstreeung von Elektronen auf der Ionisations im gasgefüllten Hohlräumen, Biophysik 5, 157 (1968).PubMedGoogle Scholar
  64. 64.
    D. Harder, Some general results from the transport theory of electron absorption, in Second symposium on microdosimetry, Stresa, Italy, EUR 4452 d-f-e, p. 567 (1970).Google Scholar
  65. 65.
    D. Harder, Fano’s theorem and the multiple scattering correction, Proceedings of the 4th Symposium on microdosimetry, Pallanza, Vol II (J. Booz, H. G. Ebert, R. Eickel, and A. Waker, eds.), Euroatom, Brussels (1973).Google Scholar
  66. 66.
    D. Harder, Present status of electron beam dosimetry, invited paper at XIVth International Congress of Radiology, Rio de Janeiro (1977).Google Scholar
  67. 67.
    G. Hettinger, C. Pettersson and H. Svensson, Displacement effect of thimble chambers exposed to a photon or electron beam from a betatron, Acta Radiol. Ther. Phys. Biol. 6, 61 (1967).PubMedGoogle Scholar
  68. 68.
    H. Holthausen, Über die Bedingungen der Röntgenstrahlenenergiemessung bei verschiedenen Impulsbreiten auf luftelektrischen Wege, Fortschr. Röntgenstr. 26, 211 (1919).Google Scholar
  69. 69.
    Y. S. Horowitz and A. Dubi, A proposed modification of Burlin’s general cavity theory for photons, Phys. Med. Biol. 27, 867 (1982).Google Scholar
  70. 70.
    HPA, The Hospital Physicists’ Association: A practical guide to electron dosimetry 5-35 MeV, HPA Report Series No 4, HPA, London (1971).Google Scholar
  71. 71.
    J. H. Hubbel, Photon mass attenuation and mass energy-absorption coefficients for H, C, N, O, Ar, and seven mixtures from 0.1 keV to 20 MeV, Rad. Res. 70, 58 (1977).Google Scholar
  72. 72.
    J. H. Hubbel, Photon mass attenuation and energy absorption coefficients from 1 keV to 20 MeV, Int. J. Appl. Rad. Isot. 33, 1269 (1982).Google Scholar
  73. 73.
    ICRU, International Commission on Radiation Units and Measurements, Radiation Dosimetry: X-Ray and Gamma Rays with Maximum Photon Energies between 0.6 and 50 MeV, ICRU report 14, International Commission on Radiation Units and Measurements, Bethesda, Maryland (1969).Google Scholar
  74. 74.
    ICRU, International Commission on Radiation Units and Measurements, Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV, ICRU report 1351, International Commission on Radiation Units and Measurements, Bethesda, Maryland (1984).Google Scholar
  75. 75.
    ICRU, International Commission on Radiation Units and Measurements, Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures, ICRU report 24, International Commission on Radiation Units and Measurements, Bethesda, Maryland (1976).Google Scholar
  76. 76.
    ICRU, International Commission on Radiation Units and Measurements, Average Energy Required to Produce an Ion Pair, ICRU report 31, International Commission on Radiation Units and Measurements, Bethesda, Maryland (1979).Google Scholar
  77. 77.
    ICRU, International Commission on Radiation Units and Measurements, Radiation Quantities and Units, ICRU report 33, International Commission on Radiation Units and Measurements, Bethesda, Maryland (1980).Google Scholar
  78. 78.
    A. C. A. Janssens, G. Eggermont, R. Jacobs, and G. Thielens, Spectrum perturbation and energy deposition models for stopping power ratio calculations in general cavity theory, Phys. Med. Biol. 19, 619 (1974).PubMedGoogle Scholar
  79. 79.
    A. C. A. Janssens, G. Eggermont, and R. Jacobs, Cavity theory, a general formulation of the problem and a proposal for practical application, Proceedings of the 8th Long. Int. Soc. Fr. de Radioprotection 65(1976).Google Scholar
  80. 80.
    A. C. A. Janssens, Modified energy deposition model for the computation of the stopping power ratio for small cavity sizes, Phys. Rev. A 23, 1164 (1981).Google Scholar
  81. 81.
    K.-A. Johansson, L. O. Mattsson, L. Lindborg, and H. Svensson, Absorbed dose determination with ionization chambers in electron and photon beams with energies between 9 and 50 MeV, in International symposium on national and international standardization of radiation dosimetry, Atlanta, IAEA-SM-222/35 (1978).Google Scholar
  82. 82.
    K.-A. Johansson and H. Svensson, Liquid ionization chamber for absorbed dose determinations in photon and electron beams, Acta Radiol. Oncol. 21, 359 (1982).PubMedGoogle Scholar
  83. 83.
    E. E. Kearsley, General cavity theory for photon and neutron dosimetry, thesis, University of Wisconsin-Madison (1981).Google Scholar
  84. 84.
    J. Kretschko, Absolutmessungen an schnellen Elektronen mit einem Faraday-Käfig, thesis, University of Frankfurt (1960).Google Scholar
  85. 85.
    I. Lax and A. Brahme, On the collimination of high energy electron beams, Acta Radiol. Oncol. 19, 199 (1980).PubMedGoogle Scholar
  86. 86.
    R. Loevinger, A formalism for calculations of absorbed dose to the medium from photon and electron beams, Med. Phys. 8, 1 (1981).PubMedGoogle Scholar
  87. 87.
    T. P. Loftus and J. T. Weaver, Standardization of 60Co and 137Cs gamma ray beams in terms of exposure, J. Res. Nat. Bur. Stand. 78A, 465 (1975).Google Scholar
  88. 88.
    B. Markus, Spezifische totale Ionisation und Ionisierungsaufwand von 15-MeV-Elektronen in Luft und einigen anderen Gasen, Naturwissenschaften 46, 1 (1959).Google Scholar
  89. 89.
    B. Markus, Eine Parallelplatten-Kleinkammer zur Dosimetrie schneller Elektronen und ihre Anwendung, Strahlentherapie 152, 517 (1976).PubMedGoogle Scholar
  90. 90.
    J. Mathieu, Thése d’Etat ès Sciences Physique, No. 313, Toulouse (1968).Google Scholar
  91. 91.
    J. Mathieu, D. Blanc, J. Casanovas, A. Dutreix, A. Wambersie, and M. Prignot, Mesure de la réparation de la dose déposée en profondeur dans un fantôme de plexiglas irradié par un faisceau d’électrons moncinétiques de 10, 15, 20 ou 30 MeV, in Second Symposium on Microdosimetry, Stresa, Italy, EUR 4452 d-f-e, p. 437 (1969).Google Scholar
  92. 92.
    L. O. Mattsson and H. Svensson, Charge build-up effects in insulating phantom materials, Acta Radiol. Oncol. 23, 393 (1984).PubMedGoogle Scholar
  93. 93.
    L. O. Mattsson, K.-A. Johansson, and H. Svensson, Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams, Acta Radiol. Oncol. 20, 385 (1981).PubMedGoogle Scholar
  94. 94.
    L. O. Mattsson, K. A. Johansson, and H. Svensson, Ferrous sulphate dosimeter for control of ionization chamber dosimetry of electron and 60Co gamma beams, Acta Radiol. Oncol. 21, 139 (1982).PubMedGoogle Scholar
  95. 95.
    L. O. Mattsson, Application of the water calorimeter, Fricke dosimeter and ionization chamber in clinical dosimetry. Paper I, p. 12. Thesis, University of Gothenborg, JSBN 91-7222-7 29-X (1984).Google Scholar
  96. 96.
    W. T. Morris and B. Owen, An ionization chamber for therapy level dosimetry of electron beams, Phys. Med. Biol. 20, 718 (1975).PubMedGoogle Scholar
  97. 97.
    D. Mosse, M. Cance, K. Steinschaden, M. Chartier, A. Ostrowsky, and J. P. Simoen, Détermination du rendement du dosimètre au sulfate ferreux dans un faisceau d’électrons de 35 MeV, Phys. Med. Biol. 27, 583 (1982).Google Scholar
  98. 98.
    H. Mutsuzawa, K. Kawashima, and T. Hiaoka, Dose conversion factors for electrons, Phys. Med. Biol. 19, 744 (1974).Google Scholar
  99. 99.
    Nordic Association of Clinical Physics (NACP), Procedures in radiation therapy dosimetry with 5 to 50 MeV electrons and roentgen and gamma rays with maximum photon energies between 1 and 50 MeV, Ada Radiol. Ther. Phys. Biol 11, 603 (1972).Google Scholar
  100. 100.
    NACP, Procedures in external radiation therapy dosimetry with electron and photon beams with maximum energies between 1 and 50 MeV, Ada Radiol. Oncol. 19, 55 (1980).Google Scholar
  101. 101.
    NACP, Electron beams with mean energies at the phantom surface below 15 MeV, Supplement to the recommendations by the Nordic Association of Clinical Physics (NACP) 1980, Ada Radiol. Oncol. 20, 401 (1981).Google Scholar
  102. 102.
    A. E. Nahum, Calculations of electron flux spectra in water irradiated with megavoltage electron and photon beams with applications to dosimetry, thesis, University of Edinburgh, U.K. (1976).Google Scholar
  103. 103.
    A. E. Nahum, Water/air mass stopping power ratios for megavoltage photon and electron beams, Phys. Med. Biol. 23, 24 (1978).PubMedGoogle Scholar
  104. 104.
    A. E. Nahum, private communication (1982).Google Scholar
  105. 105.
    A. E. Nahum, H. Svensson, and A. Brahme, The ferrous sulphate G-value for electron and photon beams: A semi-empirical analysis and its experimental support, Proceedings of the 1th symposium on microdosimetry, Vol. II, Harward Academic Publishers, Chur, Switzerland, p. 841 (1981).Google Scholar
  106. 106.
    R. Nath and R. J. Schulz, Calculated response and wall correction factors of practical ionization chambers for Co-60 gamma rays, Annual AAPM meeting Atlanta (1979).Google Scholar
  107. 107.
    R. Nath, L. Friedman, and R. J. Schulz, A comparison of plastic and water phantoms for absorbed dose calibration of high energy x-rays, Phys. Med. Biol. 23, 1093 (1978).PubMedGoogle Scholar
  108. 108.
    M.-T. Niatel, Détermination de W air (énergie moyenne nécessaire pour produire une paire d’ions dans l’air) basée sur des comparaisons d’étalons de dose absorbée effectuéesau BIPM, CCEMRI (I)/77-113, p. R(l) 56 (1977).Google Scholar
  109. 109.
    B. Nilsson and A. Brahme, Absorbed dose from secondary electrons in high energy photon beams, Phys. Med. Biol. 24, 901 (1979).PubMedGoogle Scholar
  110. 110.
    B. Nilsson and A. Brahme, Contamination of high energy photon beams, by scattered photons, Strahlentherapie 157, 181 (1981).PubMedGoogle Scholar
  111. 111.
    B. Nilsson and A. Brahme, Relation between kerma and absorbed dose in photon beams, Acta Radiol. Oncol. 22, 77 (1983).PubMedGoogle Scholar
  112. 112.
    O. T. Ogunleye, F. H. Attix, and B. R. Paliwal, Comparison of Burlin cavity theory with LiF TLD measurements for Cobalt 60 gamma rays, Phys. Med. Biol. 25, 203 (1980).PubMedGoogle Scholar
  113. 113.
    J. Ovadia, M. Danzker, J. W. Beattie, and J. S. Laughlin, Ionization of 9 to 17.5 MeV electrons in air, Rad. Res. 3, 430 (1955).Google Scholar
  114. 114.
    C. Pettersson, Calorimetric determination of the G-value of the ferrous sulphate dosimeter with high energy electrons and 60Co gamma-rays, Ark. Fys. 34, 385 (1967).Google Scholar
  115. 115.
    A. P. Pinkerton, Comparison of calorimetric and other methods for the determination of absorbed dose, Ann. Acad. Sci. 161, 63 (1969).Google Scholar
  116. 116.
    E. B. Prodgorsak, J. A. Rawlinson, M. I. Glavinvic, and H. E. Hohns, Design of x-ray targets for high energy linear accelerators in radiotherapy, Am. J. Roentgenol. 121, 873 (1974).Google Scholar
  117. 117.
    J. S. Pruitt, S. R. Domen, and R. Loevinger, The graphite calorimeter as a standard of absorbed dose for Cobalt-60 gamma radiation, J. Res. NBS 86, 495 (1981).Google Scholar
  118. 118.
    J. A. Rawlinson and H. E. Johns, Percentage depth dose for high energy x-ray beams in radiotherapy, Am. J. Roentgenol. Rad. Ther. Nucl. Med. 118, 919 (1973).Google Scholar
  119. 119.
    H. Roos, P. Drepper, and D. Harder, The transition from multiple scattering to complete diffusion of high-energy electrons, in 4th symposium on microdosimetry, EUR 5122 d-e-f, p. 779 (1974).Google Scholar
  120. 120.
    B.-I. Rudén and L. B. Bengtsson, Accuracy of megavoltage radiation dosimetry using thermoluminescent lithium fluoride, Acta Radiol. Ther. Phys. Biol. 16, 157 (1977).PubMedGoogle Scholar
  121. 121.
    C. Samuelsson, Influence of air cavities on central depth dose curves for 33 MV roentgen rays, Acta Radiol. Ther. Phys. Biol. 16, 465 (1977).PubMedGoogle Scholar
  122. 122.
    R. H. Schuler and A. O. Allen, Yield of the ferrous sulphate radiation dosimeter: An improved cathode-ray determination, J. Chem. Phys. 24, 56 (1956).Google Scholar
  123. 123.
    SCRAD, The Sub-Committee on Radiation Dosimetry of the American Association of Physicists in Medicine: Protocol for the dosimetry of high energy electrons, Phys. Med. Biol. 11, 505 (1966).Google Scholar
  124. 124.
    R. J. Shalek, P. Kennedy, M. Stovall, J. H. Cundiff, W. F. Gagnon, W. Grant, and W. F. Hanson, Quality assurance for measurements in therapy, National Bureau of Standards SP 456 111 (1976).Google Scholar
  125. 125.
    L. S. Skaggs, Depth dose of electrons from the betatron, Radiology 53, 868 (1949).PubMedGoogle Scholar
  126. 126.
    L. V. Spencer and F. H. Attix, A theory of cavity ionization, Rad. Res. 3, 239 (1955).Google Scholar
  127. 127.
    R. M. Sternheimer, The density effect for the ionization loss in various materials, Phys. Rev. 88, 851 (1952).Google Scholar
  128. 128.
    R. M. Sternheimer, Density effect for the ionization loss in various materials, Phys. Rev. 103, 511 (1956).Google Scholar
  129. 129.
    R. M. Sternheimer and R. F. Peierls, General expression for the density effect for the ionization loss of charged particles, Phys. Rev. B 3, 3681 (1971).Google Scholar
  130. 130.
    R. M. Sternheimer, S. M. Seltzer, and M. J. Berger, Density effect for the ionization loss of charged particles, Phys. Rev. B 26, 6067 (1982).Google Scholar
  131. 131.
    Strahel, Strahelentherapie 31, 582 (1929).Google Scholar
  132. 132.
    H. Svensson, Influence of scattering foils, transmission monitors and collimating system on the absorbed dose distribution from 10 to 35 MeV electron radiation, Acta Radiol. Ther. Phys. Biol. 10, 443 (1971a).PubMedGoogle Scholar
  133. 133.
    H. Svensson, Dosimetric measurements at the Nordic medical accelerators. II. Absorbed dose measurements, Acta Radiol. Ther. Phys. Biol. 10, 631 (1971b).PubMedGoogle Scholar
  134. 134.
    H. Svensson, Quality assurance in radiation therapy; physical aspects, in Supplement to International Journal of Radiation Oncology, Biology and Physics, 10(7), (1984) pp. 59–65.Google Scholar
  135. 135.
    H. Svensson and A. Brahme, Ferrous sulphate dosimetry for electrons. A reevaluation, Acta Radiol. Oncol. 18, 326 (1979).Google Scholar
  136. 136.
    H. Svensson and A. Brahme, Fundamentals of electron beam dosimetry, p. 17 of Proceedings of the symposium on electron beam therapy (F. C. H. Chu and J. S. Laughlin, eds.), Memorial Sloan Kettering Cancer Center, New York (1981).Google Scholar
  137. 137.
    H. Svensson and A. E. Nahum, Present knowledge of stopping-power ratios for ionization chambers, Invited paper presented at the World Congress on Medical Physics and Biomedical Engineering, Hamburg (1982).Google Scholar
  138. 138.
    H. Svensson, C. Pettersson, and G. Hettinger, Effects on ferrous sulphate dosimeter solution stored in small polystyrene cells, p. 251 in Solid State and Chemical Radiation Dosimetry in Medicine and Biology, IAEA, Vienna (1967).Google Scholar
  139. 139.
    H. Svensson, G. Hultén, G. Hettinger and G. Wickman, Determination of absorbed dose conversion factors of an air ionization chamber for 10–33 MeV electron and photon beams with the aid of a liquid ionization chamber, Paper presented at the XIII Int. Congress of Radiology, Madrid (1973).Google Scholar
  140. 140.
    W. M. Telford, J. E. Crawford, H. H. Zwick, and L. G. Stephens-Newsham, Linear electron accelerator for medical purposes, J. Can. Assoc. Radiol. 28, 298 (1967).Google Scholar
  141. 141.
    H. Weatherburn and B. Stedeford, Effective measuring position for cylindrical ionization chambers when used for electron beam dosimetry, Br. J. Radiol. 50, 921 (1977).PubMedGoogle Scholar
  142. 142.
    H. Weatherburn, A. D. Welsh, and B. Stedeford, Re-calculation of perturbation correction factors for thimble ionization chambers when used for electron dosimetry, in Digest of the 12th International Conference on Medical and Biological Engineering, Jerusalem, p. 516 (1979).Google Scholar
  143. 143.
    B. W. Wessels, B. R. Paliwal, M. J. Parrot, and M. C. Choi, Characterization of Clinac-18 electron-beam energy using a magnetic analysis method, Med. Phys. 6, 45 (1979).PubMedGoogle Scholar
  144. 144.
    G. Wickman, A liquid ionization chamber with high spatial resolution, Phys. Med. Biol. 19, 66 (1974a).PubMedGoogle Scholar
  145. 145.
    G. Wickman, Radiation quality independent liquid ionization chamber for dosimetry of electron radiation from medical accelerators, Acta Radiol. Ther. Phys. Biol. 13, 37 (1974b).PubMedGoogle Scholar
  146. 146.
    G. Wickman, personal communication (1983).Google Scholar
  147. 147.
    G. Wickman and H. Svensson, Personal communication (1983).Google Scholar
  148. 148.
    J. F. Wochos, L. A. De Werd, R. Hilko, J. A. Meyer, M. Stovall, D. Spearman, C. Thomason, and G. L. Dubuque, Mailed thermoluminescent dosimetry reviews in radiation therapy, Med. Phys. 9, 920 (1982).PubMedGoogle Scholar
  149. 149.
    L. Zheng-Ming, A general theory of the cavity ionization, in Collected papers in Atomic Energy Science and Technology (1976), p. 155 (in Chinese).Google Scholar
  150. 150.
    L. Zheng-Ming, An electron transport theory of cavity ionization, Rad. Res. 84, 1 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Hans Svensson
    • 1
  • Anders Brahme
    • 2
  1. 1.Radiation Physics DepartmentUniversity of UmeåUmeåSweden
  2. 2.Department of Radiation Physics, Karolinska InstituteUniversity of StockholmStockholmSweden

Personalised recommendations