Advertisement

Bioeffect Dosimetry in Radiation Therapy

  • Colin G. Orton

Abstract

Interest in understanding and manipulating time, dose, and fractionation in an attempt to find the “optimal” therapy began on Wednesday, January 29, 1896, less than three months after the discovery of X rays. This was the day that Emil Grubbé initiated the first of several 1-h daily treatments to a Mrs. Rose Lee, who had an advanced carcinoma of the breast. The choice of technique was relatively simple. Grubbé placed the X-ray tube in direct contact with the lesion and treated for the maximum time period he considered reasonable for the comfort of the patient. Since the output of the X-ray tube was so low, it was necessary to deliver multiple daily treatments in order to produce a marked effect. Grubbé had discovered fractionated radiotherapy. It apparently worked to a limited extent, since Grubbé reported marked tumor regression. Little did he realize that he had started a long, tortuous trail in search of the “ideal” treatment technique, a trail which was to take many sudden twists and turns, even on occasions going backwards. We are still on this trail today, although, hopefully, we are progressing mainly in a forward direction.

Keywords

Dose Rate Partial Tolerance Cell Population Kinetic Skin Tolerance Isoeffect Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Case, The early history of radium therapy and the American Radium Society, Am. J. Roentgenol., 82, 574–585 (1959).Google Scholar
  2. 2.
    S. Krönig and W. Friedrich, Physikalische und biologisch Grundlagen der Strahlentherapie, Strahlentherapie (Sondert).) (1918).Google Scholar
  3. 3.
    G. Schwarz, Heilung teifliegender Karzinome durch Roentgenbestrahlung von der Korperoberflache aus, Münch. Med. Wochenschr. 61, 1733 (1914).Google Scholar
  4. 4.
    H. Wintz, Ergebnisse der Roentgentherapie des Mammakarzinoms, Dtsch. Med. Wochenschr. 57(2), 1569–1573 (1931).CrossRefGoogle Scholar
  5. 5.
    L. B. Kingery, Saturation in Roentgen therapy: Its estimation and maintenance: Preliminary report, Arch. Derm. Syph., 4, 423–430 (1920).Google Scholar
  6. 6.
    G. E. Pfahler and B. P. Widman, Further observations on the use of the saturation method of radiation therapy in deep-seated malignant disease, with some statistics, Radiology, 11, 181–190 (1928).Google Scholar
  7. 7.
    H. Coutard, Roentgen therapy of epitheliomas of tonsillar regions, hypopharynx, and larynx from 1920 to 1926, Am. J. Roentgenol., 28, 313–331 (1932).Google Scholar
  8. 8.
    ICRU, International X-ray unit of intensity, Brit. J. Radiol., 1, 363–364 (1928).CrossRefGoogle Scholar
  9. 9.
    E. H. Quimby, The grouping of radium tubes in packs or plaques to produce the desired distribution of radiation, Am. J. Roentgenol., 27, 18–39 (1932).Google Scholar
  10. 10.
    R. Paterson and H. M. Parker, A dosage system for gamma ray therapy, Brit. J. Radiol., 7, 592–632 (1934).CrossRefGoogle Scholar
  11. 11.
    F. Baclesse, Clinical experience with ultrafractionated Roentgen therapy, in Progress in Radiation Therapy, Vol. 1 (F. Buschke, ed.), pp. 128–143, Grune and Stratton, New York (1958).Google Scholar
  12. 12.
    D. K. Sambrook, Theoretical aspects of dose-time factors in radiotherapy technique, Clin. Radiol., 14, 433–441 (1963).PubMedCrossRefGoogle Scholar
  13. 13.
    G. H. Fletcher, The scientific basis of the present and future practice of clinical radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 9, 1073–1082 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Backstrom, P. A. Jacobsson, B. Littbrand, and J. Wersall, Fractionation scheme with low individual doses in irradiation of carcinoma of the mouth, Acta Radiol. Ther. Phys. Biol., 12, 401–405 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    J. C. Horiot, A. Nabid, G. Chaplain, S. Jampolis, W. van den Bogaert, E. van den Schueren, G. Arcangeli, D. Gonzales, V. Svoboda, and H. P. Hamers, Clinical experience with multiple daily fractionation (MDF) in the radiotherapy of head and neck carcinoma, Cancer Bull. 34(6), 230–233 (1982).Google Scholar
  16. 16.
    H. D. Thames, L. J. Peters, H. R. Withers, and G. H. Fletcher, Accelerated fractionation vs. hyperfractionation: Rationales for several treatments per day, Int. J. Radiat. Oncol. Biol. Phys. 9, 127–138 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    V. H. J. Svoboda, Further experience with radiotherapy by multiple daily sessions, Brit. J. Radiol., 51, 363–369 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    C. C. Wang, Twice daily radiation therapy for carcinomas of the head and neck, Int. J. Radiat. Oncol. Biol. Phys., 7, 1261–1262 (1975) (abs.).CrossRefGoogle Scholar
  19. 19.
    W. Schumacher, Neue strahlenbiologische erkenntnisse zur Verbesserung der Strahlentherapie, Strahlentherapie, 64, 122–129 (1967).Google Scholar
  20. 20.
    H. J. Eichhorn, A. Lessel, and K. H. Rotte, Einfluss verschiedener Bestrahlungsrhythmen auf Tumor-und Normalgewebe in vivo, Strahlentherapie, 143, 614–629 (1972).PubMedGoogle Scholar
  21. 21.
    H. J. Habermalz and J. J. Fischer, Radiation therapy of malignant melanoma. Experience with high individual treatment doses, Cancer, 38, 2258–2262 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    H. R. Withers, L. J. Peters, H. D. Thames, and G. H. Fletcher, Hyperfractionation, Int. J. Radiat. Oncol. Biol. Phys., 8, 1807–1809 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    H. D. Thames, H. R. Withers, L. J. Peters, and G. H. Fletcher, Changes in early and late radiation responses with altered dose fractionation: Implications for dose-survival relationships, Int. J. Radiat. Oncol. Biol. Phys., 8, 219–226 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    J. F. Fowler, What next in fractionated radiotherapy? Brit. J. Cancer 49(Suppl. VI), 285–300 (1984).Google Scholar
  25. 25.
    B. Pierquin, F. Baillet, and C. H. Brown, Low dose irradiation in advanced tumors of head and neck, Acta Radiol. Ther. Phys. Biol., 14, 497–504 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    B. Pierquin, E. Calitchi, J. J. Mazeron, J. P. LeBourgeois, and S. Leung, A comparison between low dose rate radiotherapy and conventionally fractionated irradiation in moderately extensive cancers of the oropharynx, Int. J. Radiat. Oncol. Biol. Phys., 11, 431–439 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Heyman, The technique in the treatment of cancer uteri at Radiumhemmet, Acta Radiol., 10, 49–64 (1929).Google Scholar
  28. 28.
    J. F. Utley, C. F. von Essen, R. A. Horn, and J. H. Moeller, High-dose-rate afterloading brachytherapy in carcinoma of the uterine cervix, Int. J. Radiat. Oncol. Biol. Phys., 10, 2259–2263 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    C. A. Joslin, The Cathetron as a part of the radical management of cervix cancer, in High-Dose-Rate Afterloading in the Treatment of Cancer of the Uterus (T. D. Bates and R. J. Berry, eds.), pp. 11–16, BIR Special Report No. 17, BIR, London (1980).Google Scholar
  30. 30.
    R. F. Mould, (ed.), Brachytherapy 1984, Nucletron, The Netherlands (1985).Google Scholar
  31. 31.
    V. Schulz, M. Busch, and V. Bormann, Interstitial high dose-rate brachytherapy: Principle, practice and first clinical experiences with a new remote-controlled afterloading system using Ir-192, Int. J. Radiat. Oncol. Biol. Phys., 10, 915–920 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    W. E. Liversage, A comparison of the predictions of the CRE, TDF and Liversage formulae with clinical experience, in High-Dose-Rate Afterloading in the Treatment of Cancer of the Uterus (T. D. Bates and R. J. Berry, eds.), BIR Special Report No. 17, BIR, London (1981).Google Scholar
  33. 33.
    C. C. Ling, L. L. Anderson, and W. V. Shipley, Dose inhomogeneity in interstitial implants using 125I seeds, Int. J. Radiat. Oncol Biol. Phys., 5, 419–425 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Kienbrock, Über dosimeter und das quantimetrische verfahren., Fortschr. Geb. Rontgenstr., 9, 276–295 (1905).Google Scholar
  35. 35.
    L. Freund, Ein wichtiger Fortschritt für die medizinische Lichtforschung, Strahlentherapie, 10, 1145–1161 (1920).Google Scholar
  36. 36.
    M. Strandqvist, Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung, Acta Radiol. Suppl., 73, 1–300 (1944).Google Scholar
  37. 37.
    A. Reisner, Hauterythem und Rontgenbestrahlung, Ergebn. Med. Strahlenforsch. 6, 1 (1933).Google Scholar
  38. 38.
    E. Quimby and W. S. MacComb, Further studies on rate of recovery of human skin from effects of Roentgen or gamma-ray irradiation, Radiology, 29, 305–312 (1937).Google Scholar
  39. 39.
    E. Witte, Dosierung im biologischen Mass, Strahlentherapie, 72, 177–194 (1942).Google Scholar
  40. 40.
    R. K. Kepp, Ergebnisse von erythemversuchen mit fraktionierter rontgenbestrahlung verschiedener intensitat, Strahlentherapie, 72, 195–201 (1942).Google Scholar
  41. 41.
    W. H. Meyer, The co-relation of physical and clinical data in radiation therapy, Radiology, 32, 23–45 (1939).Google Scholar
  42. 42.
    L. A. DuSault, Time-dose relationships, Am. J. Roentgen., 75, 597–606 (1956).Google Scholar
  43. 43.
    M. Friedman and A. W. Pearlman, Time-dose studies in irradiation of mycosis fungoides, iso-effect curve and tumor lethal dose, Radiology, 66, 374–379 (1956).PubMedGoogle Scholar
  44. 44.
    L. Cohen, Clinical radiation dosage, Brit. J. Radiol., 22, 160–163 (1949).PubMedCrossRefGoogle Scholar
  45. 45.
    L. Cohen, Clinical radiation dosage II. Inter-relation of time, area and therapeutic ratio, Brit. J. Radiol., 22, 706–713 (1949).PubMedCrossRefGoogle Scholar
  46. 46.
    L. Cohen, Radiation response and recovery, in The Biological Basis of Radiation Therapy (E. E. Schwartz, ed.) pp. 208–316 Lippincott, New York (1966).Google Scholar
  47. 47.
    L. Cohen and J. E. Kerrich, Estimation of biological dosage factors in clinical radiotherapy, Brit. J. Cancer, 5, 180–194 (1951).PubMedCrossRefGoogle Scholar
  48. 48.
    J. F. Fowler and B. E. Stern, Dose-time relationships in radiotherapy and the validity of cell survival curve models, Brit. J. Radiol., 36, 163–173 (1963).PubMedCrossRefGoogle Scholar
  49. 49.
    J. F. Fowler, D. K. Bewley, R. L. Morgan, J. A. Silvester, T. Alper, and S. Hornsey, Dose effect relationships for radiation damage to organized tissues, Nature, 199, 253–255 (1963).PubMedCrossRefGoogle Scholar
  50. 50.
    J. F. Fowler and B. E. Stern, Dose-rate effects: Some theoretical and practical considerations, Brit. J. Radiol., 31, 389–395 (1960).CrossRefGoogle Scholar
  51. 51.
    G. W. Barendsen, Dose fractionation, dose rate and iso-effect relationships for normal tissue responses, Int. J. Radiat. Oncol. Biol. Phys., 8, 1981–1997 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    B. G. Douglas, J. F. Fowler, J. Denekamp, S. R. Harris, S. E. Ayres, S. Fairman, S. A. Hill, P. W. Sheldon, and F. A. Stewart, The effect of multiple small fractions of x rays on skin reactions in the mouse, in Cell Survival after Low Doses of Radiation, Proc. 6th L. H. Gray Conf. (T. Alper, ed.), pp. 351–361 Institute of Physics, London (1975).Google Scholar
  53. 53.
    M. V. Williams, J. Denekamp, and J. F. Fowler, A review of α/β ratios for experimental tumors: Implications for clinical studies of altered fractionation, Int. J. Radiat. Oncol Biol. Phys., 11, 87–96 (1985).PubMedCrossRefGoogle Scholar
  54. 54.
    J. F. Fowler, The estimation of total dose for different numbers of fractions in radiotherapy, Brit. J. Radiol., 38, 365–368 (1965).PubMedCrossRefGoogle Scholar
  55. 55.
    D. K. Sambrook, Theoretical aspects of dose-time factors in radiotherapy technique, Clin. Radiol, 14, 290–297 (1963).PubMedCrossRefGoogle Scholar
  56. 56.
    E. Shuttleworth and J. F. Fowler, Nomograms for radiobiologically-equivalent fractionated x-ray doses, Brit. J. Radiol, 39, 154–157 (1966).CrossRefGoogle Scholar
  57. 57.
    J. E. Burns, Nomogram for radiobiologically-equivalent fractionated doses, Brit. J. Radiol., 38, 545–547 (1965).CrossRefGoogle Scholar
  58. 58.
    L. Cohen, Theoretical “iso-survival” formulae for fractionated radiation therapy, Brit. J. Radiol., 41, 522–528 (1968).PubMedCrossRefGoogle Scholar
  59. 59.
    W. E. Liversage, A critical look at the ret, Brit. J. Radiol., 44, 91–100 (1971).PubMedCrossRefGoogle Scholar
  60. 60.
    J. Denekamp, Changes in the rate of repopulation during multifraction irradiation of mouse skin, Brit. J. Radiol., 46, 381–387 (1973).PubMedCrossRefGoogle Scholar
  61. 61.
    J. Denekamp, Changes in the rate of proliferation in normal tissues after irradiation, in Radiation Research, Biomedical, Chemical and Physical Perspectives (Nygaard, Adler, and Sinclair, eds.), pp. 810–825 Academic, New York (1975).Google Scholar
  62. 62.
    J. E. Moulder and J. J. Fischer, Radiation reaction of rat skin: The role of number of fractions and overall treatment time, Cancer, 37, 2762–2767 (1976).PubMedCrossRefGoogle Scholar
  63. 63.
    S. Kozubek, A simple radiobiological model for fractionated radiation therapy, Int. J. Radiat. Oncol Biol. Phys., 8, 1975–1980 (1982).PubMedCrossRefGoogle Scholar
  64. 64.
    F. Ellis, Fractionation in radiotherapy, in Modern Trends in Radiotherapy (Deeley and Wood, eds.), Vol. 1, pp. 34–51 Butterworth, London (1967).Google Scholar
  65. 65.
    L. Cohen, Radiation parameters. Ph.D. thesis, University of Witwatersrand, 1960.Google Scholar
  66. 66.
    F. Ellis, Relationship between log dose and log time in radiotherapy—the Strandqvist lines, Brit. J. Radiol 49, 651 (1976).PubMedCrossRefGoogle Scholar
  67. 67.
    C. G. Orton and F. Ellis, Definition of T in the NSD equation, Brit. J. Radiol., 47, 201–202 (1974).CrossRefGoogle Scholar
  68. 68.
    C. G. Orton, Errors in applying the NSD concept, Radiology, 115, 233–235 (1975).PubMedGoogle Scholar
  69. 69.
    F. Ellis, Dose, time and fractionation: A clinical hypothesis, Clin. Radiol., 20, 1–7 (1969).PubMedCrossRefGoogle Scholar
  70. 70.
    B. M. Winston, F. Ellis, and E. J. Hall, The Oxford NSD calculator for clinical use, Clin. Radiol., 20, 8–11 (1969).PubMedCrossRefGoogle Scholar
  71. 71.
    R. E. Peschel and J. J. Fischer, Optimization of the time dose relationship, Semin. Oncol., 8, 38–47 (1981).PubMedGoogle Scholar
  72. 72.
    J. J. Fischer and D. B. Fischer, The determination of time-dose relationships from clinical data, Brit. J. Radiol., 44, 785–792 (1971).PubMedCrossRefGoogle Scholar
  73. 73.
    D. Herbert, NSD forever? Night thoughts of a medical physicist, Int. J. Radiat. Oncol Biol Phys., 9, 1099–1100 (1983).CrossRefGoogle Scholar
  74. 74.
    J. C. Probert, Doubts about the nominal standard dose, Brit. J. Radiol. 44, 648 (1971).PubMedCrossRefGoogle Scholar
  75. 75.
    H. R. Withers, H. D. Thames, and L. J. Peters, Differences in the fractionation response of acute and late responding tissues, in Progress in Radio-Oncology II, (Karcher, Kogelnik, and Reinartz, eds.), pp. 257–296, Raven Press, New York (1982).Google Scholar
  76. 76.
    H. S. Reinhold, J. G. Kaalen, and K. Unger-Gils, Radiation myelopathy of the thoracic spinal cord, Int. J. Radiat. Oncol. Biol. Phys., 1, 651–657 (1976).PubMedCrossRefGoogle Scholar
  77. 77.
    W. M. Wara, T. L. Phillips, G. E. Sheline, and J. G. Schwade, Radiation tolerance of the spinal cord, Cancer, 35, 1558–1562 (1975).PubMedCrossRefGoogle Scholar
  78. 78.
    L. Cohen and M. Creditor, An iso-effect table for radiation tolerance of the human spinal cord, Int. J. Radiat. Oncol. Biol. Phys., 7, 961–966 (1981).PubMedCrossRefGoogle Scholar
  79. 79.
    T. E. Schultheiss, E. M. Higgins, and A. M. El-Mahdi, The latent period in clinical radiation myelopathy, Int. J. Radiat. Oncol. Biol. Phys., 10, 1109–1115 (1984).PubMedCrossRefGoogle Scholar
  80. 80.
    G. E. Sheline, W. M. Wara, and V. Smith, Therapeutic irradiation and brain injury, Int. J. Radiat. Oncol. Biol Phys., 6, 1215–1228 (1980).PubMedCrossRefGoogle Scholar
  81. 81.
    S. Hornsey, C. C. Morris, and R. Myers, The relationship between fractionation and total dose for x ray induced brain damage, Int. J. Radiat. Oncol. Biol. Phys., 7, 393–396 (1981).PubMedCrossRefGoogle Scholar
  82. 82.
    R. D. Pezner and J. O. Archambeau, Brain tolerance unit: A method to estimate risk of radiation brain injury for various dose schedules, Int. J. Radiat. Oncol. Biol. Phys., 7, 397–402 (1981).PubMedCrossRefGoogle Scholar
  83. 83.
    L. Cohen and M. Creditor, Iso-effect tables for tolerance of irradiated normal human tissues, Int. J. Radiat. Oncol. Biol. Phys., 9, 233–241 (1983).PubMedCrossRefGoogle Scholar
  84. 84.
    W. M. Wara, T. L. Phillips, L. W. Margolis, and V. Smith, Radiation pneumonitis—A new approach to the derivation of time-dose factors, Cancer, 32, 547–552 (1973).PubMedCrossRefGoogle Scholar
  85. 85.
    I. Turesson and G. Notter, The influence of the overall treatment time in radiotherapy on the acute reaction: Comparison of the effects of daily and twice-a-week fractionation on human skin, Int. J. Radiat. Oncol. Biol. Phys., 10, 607–618 (1984).PubMedCrossRefGoogle Scholar
  86. 86.
    I. Turesson and G. Notter, The influence of fraction size in radiotherapy on the late normal tissue reaction—I: Comparison of the effects of daily and once-a-week fractionation on human skin, Int. J. Radiat. Oncol. Biol Phys., 10, 593–598 (1984).PubMedCrossRefGoogle Scholar
  87. 87.
    I. Turesson and G. Notter, The influence of fraction size in radiotherapy on the late normal tissue reaction—II: Comparison of the effects of daily and twice-a-week fractionation on human skin, Int. J. Radiat. Oncol Biol Phys., 10, 599–606 (1984).PubMedCrossRefGoogle Scholar
  88. 88.
    J. F. Fowler, Non-standard fractionation in radiotherapy, Int. J. Radiat. Oncol. Biol Phys., 10, 755–759 (1984).PubMedCrossRefGoogle Scholar
  89. 89.
    R. L. Dixon, General equation for the calculation of Nominal Standard Dose, Acta Radiol. Ther., 11, 305–311 (1972).CrossRefGoogle Scholar
  90. 90.
    J. Kirk, W. M. Gray, and E. R. Watson, Cumulative radiation effect Part I: fractionated treatment regimes, Clin. Radiol, 22, 145–155 (1971).PubMedCrossRefGoogle Scholar
  91. 91.
    J. Kirk, W. M. Gray, and E. R. Watson, Cumulative radiation effect Part II: Continuous radiation therapy—long-lived sources, Clin. Radiol, 23, 93–105 (1972).PubMedCrossRefGoogle Scholar
  92. 92.
    J. Kirk, W. M. Gray, and E. R. Watson, Cumulative radiation effect Part III: Continuous radiation therapy—short-lived sources, Clin. Radiol, 24, 1–11 (1973).PubMedCrossRefGoogle Scholar
  93. 93.
    J. Kirk, W. M. Gray, and E. R. Watson, Cumulative radiation effect Part IV: Normalization of fractionated and continuous therapy—area and volume correction factors, Clin. Radiol, 26, 77–88 (1975).PubMedCrossRefGoogle Scholar
  94. 94.
    J. Kirk, W. M. Gray, and E. R. Watson, Cumulative radiation effect Part V: Time gaps in treatment regimes, Clin. Radiol, 26, 159–176 (1975).CrossRefGoogle Scholar
  95. 95.
    J. Kirk, W. M. Gray, and E. R. Watson, Cumulative radiation effect Part VI: Simple nomographic and tabular methods for the solution of practical problems, Clin. Radiol, 28, 29–74 (1977).PubMedCrossRefGoogle Scholar
  96. 96.
    C. G. Orton, Analysis and discussion of the time/dose/fractionation problem, Q. Bull Am. Assoc. Phys. Med., 6, 173–175 (1972).Google Scholar
  97. 97.
    C. G. Orton and F. Ellis, A simplification in the use of the NSD concept in practical radiotherapy, Brit. J. Radiol., 46, 529–537 (1973).PubMedCrossRefGoogle Scholar
  98. 98.
    C. G. Orton and L. Cohen, A variable exponent TDF model, Proceedings of the Second International Conference on Time, Dose, and Fractionation in Radiation Oncology, Madison, Wisconsin, September 1984 (Paliwal, Herbert, and Orton, eds.), AIP, New York (in press).Google Scholar
  99. 99.
    C. G. Orton, SI units of TDF, Brit. J. Radiol., 53, 513–514 (1980).PubMedCrossRefGoogle Scholar
  100. 100.
    L. Cohen, F. Hendricksen, J. Mansell, M. Awschalom, A. Hrejsa, R. Kaul, and I. Rosenberg, Late reactions and complications in patients treated with high energy neutrons p(66 MeV) Be(49 MeV), Int. J. Radiat. Oncol. Biol. Phys., 7, 179–184 (1981).PubMedCrossRefGoogle Scholar
  101. 101.
    L. Cohen and M. Awschalom, Fast neutron radiation therapy, Ann. Rev. Biophys. Bioeng., 11, 359–390 (1982).CrossRefGoogle Scholar
  102. 102.
    Y. Kutsutani-Nakamura, Nippon Acta Radiol. 38, 950–960 (1978).PubMedGoogle Scholar
  103. 103.
    R. Wideröe, High-energy electron therapy and the two-component theory of radiation, Acta Radiol. Ther., 4, 257–278 (1966).CrossRefGoogle Scholar
  104. 104.
    L. Cohen, Biophysical Models in Radiation Oncology, CRC Press, Boca Raton, Florida (1983).Google Scholar
  105. 105.
    L. H. Gray, F. Ellis, G. C. Fairchild, and E. R. Paterson, Dosage-rate in radiotherapy, Brit. J. Radiol., 17, 327–342 (1944).CrossRefGoogle Scholar
  106. 106.
    L. H. Gray and M. E. Scholes, The effect of ionizing radiations on the broad bean root, Brit. J. Radiol., 24, 285–291 (1951).PubMedCrossRefGoogle Scholar
  107. 107.
    L. Cohen, Derivation of cell population kinetic parameters from clinical statistical data (program RAD 3), Int. J. Radiat. Oncol. Biol. Phys., 4, 835–840 (1978).PubMedCrossRefGoogle Scholar
  108. 108.
    L. Cohen, A cell population kinetic model for fractionated radiation therapy. I. Normal tissues, Radiology, 101, 419–427 (1971).PubMedGoogle Scholar
  109. 109.
    L. Cohen, An interactive program for standardization of prescriptions in radiation therapy, Comput. Programs Med., 3, 27–35 (1973).CrossRefGoogle Scholar
  110. 110.
    L. Cohen, Cell population kinetics in radiation therapy: optimization of tumor dosage, Cancer, 32, 236–244 (1973).PubMedCrossRefGoogle Scholar
  111. 111.
    G. M. McKee and A. Mutscheller, The Science of Radiology, Thomas, Springfield, Illinois (1933).Google Scholar
  112. 112.
    R. Pape, Der Einfluss der Veränderung des Minuten-r-Zuflusses auf die Hautreaktion bei kontinuierlicher und geteilter Dosenapplikation, Strahlentherapie, 45, 475–486 (1932).Google Scholar
  113. 113.
    A. Brunschwig and S. P. Perry, High versus low intensity irradiation in the treatment of carcinoma, Radiology, 26, 706–716 (1936).Google Scholar
  114. 114.
    J. S. Fulton, Report on Discussion of Society of Radiotherapists (1937).Google Scholar
  115. 115.
    H. Holthusen, Vergleichende Untersuchungen über die Wirhung von Röntgen-und Radiumstrahlen, Strahlentherapie, 46, 273–288 (1933).Google Scholar
  116. 116.
    R. McWhirter, Radiosensitivity in relation to time intensity factor, Brit. J. Radiol., 9, 287–299 (1936).CrossRefGoogle Scholar
  117. 117.
    E. J. Hall, Radiation dose-rate: A factor of importance in radiobiology and radiotherapy, Brit. J. Radiol., 45, 81–97 (1972).PubMedCrossRefGoogle Scholar
  118. 118.
    D. L. Dewey and J. W. Boag, Modification of the oxygen effect when bacteria are given large doses of radiation, Nature, 183, 1450–1451 (1959).PubMedCrossRefGoogle Scholar
  119. 119.
    C. D. Town, Effect of high dose-rates on survival of mammalian cells, Nature, 215, 847–848 (1967).PubMedCrossRefGoogle Scholar
  120. 120.
    E. R. Epp, H. Weiss, and A. Santomasso, The oxygen effect in bacterial cells irradiated with high intensity pulsed electrons, Radiat. Res., 34, 320–325 (1968).PubMedCrossRefGoogle Scholar
  121. 121.
    T. L. Phillips and R. B. Worsnop, Oxygen depletion by ultra-high-dose-rate electrons in bacteria and mammalian cells, Radiat Res. 35, 545 (1968) (abs).Google Scholar
  122. 122.
    R. J. Berry, E. J. Hall, D. W. Forster, T. H. Storr, and M. J. Goodman, Survival of mammalian cells exposed to x rays at ultrahigh dose-rates, Brit. J. Radiol., 42, 102–107 (1969).PubMedCrossRefGoogle Scholar
  123. 123.
    M. L. Griem, L. S. Skaggs, L. H. Lanzl, and F. D. Malkinson, Experience in radiobiological dosimetry with high dose-rate electrons, Ann. N.Y. Acad. Med., 161, 317–322 (1969).CrossRefGoogle Scholar
  124. 124.
    P. W. Todd, H. S. Winchell, J. M. Feola, and G. E. Jones, Irradiation by pulsed high-intensity x rays of human cells cultured in vitro. Radiat. Res. 31, 644 (1967) (abs.).Google Scholar
  125. 125.
    A. H. W. Nias, A. J. Swallow, J. P. Keene, and B. W. Hodgson, Survival of HeLa cells from 10 nanosecond pulses of electrons, Int. J. Radiat. Biol., 17, 595–598 (1970).CrossRefGoogle Scholar
  126. 126.
    G. T. Pack and E. H. Quimby, Time-intensity factor in irradiation, Am. J. Roentgenol., 28, 650–667 (1932).Google Scholar
  127. 127.
    R. Paterson, The Treatment of Malignant Disease by Radiotherapy, 2nd edn, Williams and Wilkins, Baltimore (1963).Google Scholar
  128. 128.
    J. M. Wilkinson, Interstitial radiotherapy at low dose-rate, Brit. J. Radiol. 45, 708 (1972).PubMedCrossRefGoogle Scholar
  129. 129.
    F. Ellis, Dose-time relationships in clinical radiotherapy, in Cancer, Progress Volume (R. W. Raven, ed.), pp. 163–176, Butterworths, London (1963).Google Scholar
  130. 130.
    C. G. Orton, Time-dose factors (TDFs) in brachytherapy, Brit. J. Radiol., 47, 603–607 (1974).PubMedCrossRefGoogle Scholar
  131. 131.
    W. E. Liversage, A general formula for equating protracted and acute regimes of radiation, Brit. J. Radiol., 42, 432–440 (1969).PubMedCrossRefGoogle Scholar
  132. 132.
    L. G. Lajtha and R. Oliver, Some radiobiological considerations in radiotherapy, Brit. J. Radiol., 34, 252–257 (1961).PubMedCrossRefGoogle Scholar
  133. 133.
    F. Ellis and A. Sorensen, A method of estimating biological effect of combined intracavitary low dose rate radiation with external radiation in carcinoma of the cervix uteri, Radiology, 110, 681–686 (1974).PubMedGoogle Scholar
  134. 134.
    N. Tapley, Clinical Applications of the Electron Beam, Wiley, New York (1976).Google Scholar
  135. 135.
    C. G. Orton, Time, dose, fractionation, and volume relationships in radiotherapy, in Handbook of Medical Physics, Vol. 1. (Waggener, Kerieakes, and Shalek, eds.), pp. 265–293, CRC Press, Boca Raton (1982).Google Scholar
  136. 136.
    C. G. Orton, Re-assessment of normalization between fractionated and continuous radiotherapy for the CRE and TDF equations, Brit. J. Radiol., 53, 374–375 (1980).PubMedCrossRefGoogle Scholar
  137. 137.
    J. S. Mitchell, Studies in Radiotherapeutics, p. 234, Blackwell, Oxford (1960).Google Scholar
  138. 138.
    C. G. Orton and B. Webber, Time-dose factor (TDF) analysis of dose rate effects in permanent implant dosimetry, Int. J. Radiat. Oncol. Biol. Phys., 2, 55–60 (1977).PubMedCrossRefGoogle Scholar
  139. 139.
    G. Joyet and K. Hohl, Die biologische Hautreaktion in der Tiefentherapie als Funktion der Feldgrosse; ein Gesetz der Strahlentherapie, Fortschr. Geb. Röntgen., 82, 387–400 (1955).CrossRefGoogle Scholar
  140. 140.
    M. Garcia, Further observations on tissue dosage in cancer of cervix uteri, Am. J. Roentgen. 73, 3560 (1955).Google Scholar
  141. 141.
    J. W. Hopewell and C. M. A. Young, The effect of field size on the reaction of pig skin to single doses of x rays, Brit. J. Radiol., 55, 356–361 (1982).PubMedCrossRefGoogle Scholar
  142. 142.
    C. F. von Essen, Effect of field size on the reaction of pig skin to single doses of x rays, Brit. J. Radiol. 55, 936 (1982).CrossRefGoogle Scholar
  143. 143.
    J. W. Hopewell and C. M. A. Young, Effect of field size on the reaction of pig skin to single doses of x rays, Brit. J. Radiol., 55, 936–937 (1982).CrossRefGoogle Scholar
  144. 144.
    D. L. Eads, J. M. Vaeth, and D. G. Baker, To rec or to ret, that is the question, Radiol. Clin. Biol., 43, 21–39 (1974).PubMedGoogle Scholar
  145. 145.
    F. Ellis, Tolerance dosage in radiotherapy with 200 kV x rays, Brit. J. Radiol., 15, 348–350 (1942).CrossRefGoogle Scholar
  146. 146.
    N. Berg and M. Lindgren, Relationship between field size and tolerance of rabbit brain in roentgen irradiation (200 kV) via a slit-shaped field, Acta Radiol., 1, 147–168 (1963).CrossRefGoogle Scholar
  147. 147.
    C. F. von Essen, Clinical radiation tolerance of the skin and upper aerodigestive tract, in Frontiers of Radiation Therapy Oncology (Vaeth, ed.), Vol. 6, pp. 148–159, University Park Press, Baltimore (1972).Google Scholar
  148. 148.
    B. Jolies, Quantitative biological dose control in interstitial radium therapy, Brit. J. Radiol., 19, 143–144 (1946).CrossRefGoogle Scholar
  149. 149.
    B. Jolies and R. G. Mitchell, Optimal skin tolerance dose levels, Brit. J. Radiol., 20, 405–409 (1947).CrossRefGoogle Scholar
  150. 150.
    C. F. von Essen, A spatial model of time-dose-area relationship in radiation therapy, Radiology, 81, 881–884 (1963).Google Scholar
  151. 151.
    S. G. Prasad, Relation between tolerance dose and treatment field size in radiotherapy, Med. Phys., 5, 430–433 (1978).PubMedCrossRefGoogle Scholar
  152. 152.
    R. Paterson, The Treatment of Malignant Disease by Radium and X-Rays, Arnold, London (1948).Google Scholar
  153. 153.
    P. Brumm, On the validity of the NSD concept, Brit. J. Radiol., 56, 957–962 (1983).PubMedCrossRefGoogle Scholar
  154. 154.
    J. Walter and H. Miller, A Short Textbook of Radiotherapy for Technicians and Students, p. 240, J. and A. Churchill, London (1950).Google Scholar
  155. 155.
    M. K. Gupta, Reconsideration of area correction factor for CRE and TDF models, Brit. J. Radiol., 57, 188–190 (1984).PubMedCrossRefGoogle Scholar
  156. 156.
    T. E. Schultheiss, C. G. Orton, and R. A. Peck, Models in radiotherapy: Volume effects, Med. Phys., 10, 410–415 (1983).PubMedCrossRefGoogle Scholar
  157. 157.
    M. Busch and V. Rosenow, Dose-volume relationships, in Computer Applications in Radiation Oncology (E. S. Sternick, ed.), pp. 279–291, University Press of New England, Hanover, New Hampshire (1976).Google Scholar
  158. 158.
    A. Dritschilo, J. T. Chaffey, W. A. Bloomer, and A. Marck, The complication probability factor: A method for selection of radiation treatment plans, Brit. J. Radiol., 51, 370–374 (1978).PubMedCrossRefGoogle Scholar
  159. 159.
    P. Rubin, Radiation Biology and Radiation Pathology Syllabus, pp. 2–5, ACR, Chicago (1975).Google Scholar
  160. 160.
    P. Rubin and C. Poulter, in Clinical Oncology for Medical Students and Physicians, a Multi-disciplinary Approach (P. Rubin, ed.), pp. 35–39, ACS, New York (1978).Google Scholar
  161. 161.
    A. B. Wolbarst, E. S. Sternick, and A. Dritschilo, Optimized radiotherapy treatment planning using the complication probability factor (CPF), Int. J. Radiat. Oncol. Biol. Phys., 6, 723–728 (1980).PubMedCrossRefGoogle Scholar
  162. 162.
    A. B. Wolbarst, Optimization of radiation therapy II: The critical voxel model, Int. J. Radiat. Oncol. Biol. Phys., 10, 741–745 (1984).PubMedCrossRefGoogle Scholar
  163. 163.
    T. E. Schultheiss and C. G. Orton, Models in radiotherapy: Definition of decision criteria, Med. Phys., 12, 183–187 (1985).PubMedCrossRefGoogle Scholar
  164. 164.
    Proceedings of the Second International Conference on Time, Dose, and Fractionation in Radiation Oncology, Madison, Wisconsin, September 1984 (Paliwal, Herbert, and Orton, eds.), AIP, New York (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Colin G. Orton
    • 1
  1. 1.Radiation Oncology Center, Harper-Grace HospitalsWayne State University School of MedicineDetroitUSA

Personalised recommendations