Abstract
The use of exercise to reveal physiological responses and adaptations has a long history. Exercise can be quantified and repeated exertion markedly alters body functions. Well established exercise procedures such as the use of an individual’s aerobic capacity have allowed exercise stress to be used as an experimental model to investigate the endogenous opiate system. A vast literature had accumulated prior to 1975 concerning the physiological effects of morphine. When the endogenous opiates were discovered’, researchers already had insights into probable functions of the endogenous opiates. Therefore, it is not surprising that many possible roles for endorphins/enkephalins have been studied using the exercise model.
Keywords
Locomotor Activity Adrenal Medulla Opiate Receptor Spontaneous Locomotor Activity Morphine InjectionPreview
Unable to display preview. Download preview PDF.
References
- 1.Hughes, J.T.W. Smith, H. Kosterlitz, L.A. Forthergill, B.A. Morgan and H.R. Harris. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579, 1975.PubMedCrossRefGoogle Scholar
- Goldstein, A. and P. Sheenan. Tolerance to opioid narcotics. I. Tolerance to the “Running Fit” caused by levorphanol in the mouse. J. Pharmacol. and Exp. Therapeutics. 169:2, 175–184, 1969.Google Scholar
- Babbini, M. and W.H. Davis. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br. J. Pharmac. 46:213–214, 1972.Google Scholar
- Browne, R.G. and D.S. Segal. Behavioral activating effects of opiates and opioid peptides. Biol. Psychiat. 15:77–86, 1980.Google Scholar
- 5.Drust, E.G. and I.L. Crawford. Comparison of the Effects of TRH and D1-Ala2-Metenkephalinamide on hippocampal electrical activity and behavior in the unanesthetized rat. Peptides. 4: 239–243, 1983.Google Scholar
- 6.Oka, T. and E. Hosoya. Effects of humoral modulators and naloxone on morphine-induced changes in spontaneous locomotor activity of the rat. Psychoparmacol. 47, 243–248, 1976.Google Scholar
- Katz, R.J., B.J. Carroll and G. Baldrighi. Behavioral activation by enkephalins in mice. Pharmacol. Biochem. Behavior. 8, 493–496, 1978.Google Scholar
- Amir, S., Z.H. Galina, R. Blair, Z.W. Brown and Z. Amit. Opiate receptors may mediate the suppressive but not the excitatory action of ACTH on motor activity in rats. Eur. J. Pharmacol. 66:307–313, 1980.Google Scholar
- Castellano, C. Strain dependent effects of the enkephalin analogue FK 33–824 on locomotor activity in mice. Pharmacol. Biochem. Behay. 15:729–734, 1981.Google Scholar
- Castellano, C. and S. Puglisi-Allegra. Effects of naloxone and naltrexone on locomotor activity in C57B1/6 and DBA/2 mice. Pharmacol. Biochem. Behay. 16:561–563, 1982.Google Scholar
- Walker, J.M., G.G. Berntson, T.S. Paulucci and T.C. Champney. Blockade of endogenous opiates reduces activity in the rat. Pharmacol. Biochem. Behay. 14:113–116, 1981.Google Scholar
- 12.Castellano, C. and A. Oliverio. A genetic analysis of morphine-induced running and analgesia in the mouse. Psychopharmacologica. 41: 197–200, 1975.Google Scholar
- 13.Oliverio, A. and C. Castellano. Genotype-dependent sensitivity and tolerance to morphine and herion dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacologica 39: 13–22, 1974.Google Scholar
- 14.Castanas, E., P. Giraud, Y. Audigier, R. Drissi, F. Boudouresque, B. Conte-Devolx and C. Oliver. Opiate binding sites spectrum on bovine adrenal medullas and six human pheochromocytomas. Life Sciences 33: Supp. 1, 295–298, 1983.CrossRefGoogle Scholar
- 15.Christie, M.J. and G. Chesher. Physical dependence on physiologically released endogenous opiates. Life Sciences 30: 1173–1177, 1982.Google Scholar
- Christie, J.J., G.B. Chesher and K.D. Bird. The correlation between swim-stress induced antinociception and [PH] Leu-enkephalin binding to brain homogenates in mice. Pharmac. Biochem. Behay. 15:853–857, 1981.Google Scholar
- 17.Christie, H.J., P. Trisdikoon and G.B. Chesher. Tolerance and cross-tolerance with morphine resulting from physiological release of endogenous opiates. Life Sciences. 31: 839–845, 1982.Google Scholar
- 18.Shyu, B.C., S.A. Anderson and P.Toren. Endorphin-mediated increase in pain threshold induced by long-lasting exercise in rats. Life Sciences 30: 833–840, 1982.PubMedCrossRefGoogle Scholar
- 19.Pert, C.B. and D.L. Bowie. Behavioral manipulation of rats causes alterations in opiate receptor occupancy. In: E. Usdin, W.E. Bunney and N.S. Kline (Eds.) Endorphins in mental health research, 1979, New York: Oxford University Press, 93–104.Google Scholar
- 20.Metzer, J.M. and E.A. Stein. 8-endorphin and sprint training. Life Sciences 34: 1541–1547, 1984.CrossRefGoogle Scholar
- 21.Evans, C.J., E. Erdelyi, E. Weber, J.D. Barchas. Identification of pro-opiomelanocortin-derived peptides in the human adrenal medulla. Science 221: 957–960, 1983.PubMedCrossRefGoogle Scholar
- 22.Linnoila, R.I., R.P. Diaugustine; A. Hervonen and R.J. Miller. Distribution of [Mets]- and [Leu5]-enkephalin-, vasoactive intestinal polypeptide-and substance P-like immunoreactivities in human adrenal glands. Neuroscience 5: 2247–2259, 1980.Google Scholar
- Lundberg, J.H., B. Hamberger, M. Schultzberg, T. Höfelt, P.O. Grandbert, S. Efendic, L. Terenius, M. Goldstein and R. Luft. Enkephalin-and somatostatin-like immunoreactivities in human drenal medulla and pheochromocytoma. Proc. Natl. Acad. Sci. 76:4079–4083, 1979.Google Scholar
- 24.Quirion, R., M.S. Finkel, F.A.O. Mendelson and N. Zamir. Localization of opiate binding sites in kidney and adrenal gland of the rat. Life Sciences. 33: Supp. 1, 299–302, 1983.Google Scholar
- Schultzberg, M., T. Höfelt, J.H. Lundberg, L. Terenius, L.G. Elfvin and R. Elde. Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and in adrenal medullary gland cells. Acta. Physiol. Scand. 103:475–477, 1978.Google Scholar
- 26.Viveros, 0.H., E.J. Diliberto, E. Hazum and K.J. Chang. Enkephalins as possible adrenomedullary hormones: storage, secretion, and regulation of synthesis. In: Neural peptides and neuronal communication, ed. by E. Costa and M. Trabucchi. Raven Press, N.Y., vol. 22, 191–204, 1980.Google Scholar
- Viveros, O.H., E.J. Diliberto, E. Hazum and K.J. Chang. Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol. Pharmacol. 16:1101–1108, 1979.Google Scholar
- 28.Viveros, 0.H., S.P. Wilson, E.J. Diliberto, E. Hazum. K.J. Chang. Enkephalins in adrenomedullary chromaffin cells and sympathetic nerves. Adv. Physiol. Sci. Vol. 14. Endocrinology, neuroendocrinology, neuropeptides-11, ed. by E. Stark, G.B. Markara, B. Halasz, G. Rappoy, 349–353.Google Scholar
- 29.Yoshimasa, T., K. Nakao, Y. Ikeda, M. Sakamoto, M. Suds and H. Imura. Methionine-enkephalin, Leucine-enkephalin, methionine-enkephalin-Arg6-Phe7 and methionine-enkephalin-Arg6-Gly7-Leu8 in human pheochromocytoma. Life Sciences. 33: 85–88, 1983.PubMedCrossRefGoogle Scholar
- 30.Kumakura, K., A. Guidotti, H.Y.T. Yang, L. Saiani and E. Costa. A role for the opiate peptides that presumably coexist with acetylcholine in splanchnic nerves. in: Neuronal Peptides and Neuronal Communication ed. W. Costa and M. Trabucchi, Raven Press, New York, 1980, P. 571–580.Google Scholar
- 31.Gustafson, A.B., P.A. Farrell, T. Garthwaite and R. Kalkhoff. Endogenous opiates modulate the plasma epinephrine response to submaximal exercise in man. Exerpta Medica International Congress Series 652:682, abstract 843, 1984.Google Scholar
- 32.Grossman, A., P. Bouloux, P. Price, P.L. Drury, K.S.L. Lam, T. Turner, J. Thomas, G.M. Besser and J.R. Sutton. Role of opioid peptides in the hormonal responses to acute exercise in man. Clinical Science 67: 483–491, 1984.Google Scholar
- 33.Galbo, H. Hormonal and metabolic adaptation to exercise. Georg. Thieme Verlag, Stuttgart, 1983.Google Scholar
- Kelso, T.B., W.G. Herbert, F.C. Gwazdauskas, F.L. Goss and J.L. Hess. Exercise-thermoregulatory stress and increased plasma B-endorphin/B-lipotropin in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57:444–449, 1984.Google Scholar
- 35.Janal, M.N., E.W.D. Colt, W.C. Clark and M.Glusman. Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: Effects of naloxone, Pain 19: 13–25, 1984.PubMedCrossRefGoogle Scholar
- 36.Elliot, D.L., L. Goldberg, W.J. Watts and E. Orwoll. Resistance exercise and plasma beta-endorphin/beta lipotropin immunoreactivity. Life Sciences 34: 515–518, 1984.Google Scholar
- Farrell, P.A., W.K. Gates, W.P. Morgan, and M.G. Maksud. Increases in plasma B-endorphin/B-lipotropin immunoreactivity after treadmill running in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52(5): 1245–1249, 1982.Google Scholar
- 38.Fraioli, F., C. Moretti, D. Paolucci, E. Alicicco, F. Crescenzi, and G. Fortunio. Physical exercise stimulates marked concomitant release of 8-endorphin and adrenocortiocotropic hormone (ACTH) in peripheral blood in man. Experientia 36: 987–989, 1980.Google Scholar
- 39.Colt, W.D., S.L. Wardlow, and A.G. Frantz. The effect of running on plasma 8-endorphin. Life Science 28: 1637–1640, 1981.Google Scholar
- Carr, D.B., B.A. Bullen, G.S. Skrinor, M.A. Arnold, M. Rodenblatt, I.Z. Beitins, J.B. Martin and J.W. McArthur. Physical conditioning facilitates the exercise-induced secretion of Beta-endorphin and Beta-lipotropin in women. N. Eng. J. Med. 305:560–562, 1981.Google Scholar
- Gambert, S.R., T.L. Garthwaite, C.H. Pontzer, E.E. Cook, F. Tristani, E.H. Duthie, D.R. Martinson, T.C. Hagen and D.J. McCarty. Running elevates plasma B-endorphin immunoreactivity and ACTH in untrained human subjects. Proc. Soc. Exp. Biol. Med. 168:1–4, 1981.Google Scholar
- Yamaguchi, H., A.S. Liotla and D.T. Krieger. Simultaneous determination of human plasma immunoreactive B-Lipotropin, y-Lipotropin, and 8-Endorphin using immune-affinity chromatography. J. Clin. Endocrinol. Metab. 51:1002–1008, 1980.Google Scholar
- Li, C.H., A.J. Rao, B.A. Doneen and D. Yamashiro. 8-Endorphin: Lack of correlation between opiate activity and immunoreactivity in radioimmnoassay. Biochem. Biophys. Res. Commun. 75:576–590, 1977.Google Scholar
- Haber, D., D.P. Pickar, R.A. Dionne, D.L. Bowie, B.A. Ewols, T.W. Moody, M.G. Sable and C.B. Pert. Assay of endogenous opiate receptor ligands in human CSF and plasma. Sub. Alcohol Act./Misuse. 1:113–118, 1980.Google Scholar
- 45.Farrell, P.A., W.G. Gates, W.P. Morgan and C.B. Pert. Leucine Enkephalin-like radioreceptor activity and tension–anxiety before and after competitive running. In: Biochemistry of Exercise ed. H.G. Knuttgen, J.A. Vogel and J. Poortmans. Human Kinetics Publishers, Champaign, Illinois, 637–644, 1983.Google Scholar
- Winder W.W., R.C. Hickson, J.M. Hagberg, A.A. Ehsoni and J.A. McLane. Training-induced changes in hormonal and metabolic responses to submaximal exercise. J. Abel. Physiol. Respirat. Environ. Exercise Physiol. 46:766–771, 1979.Google Scholar
- Bullen, B.A., G.S. Skrinor, I.Z. Beitins, D.B. Carr, S.K. Reppert, C.O. Dodson, M. deM. Fencl, E.V. Gervino and J.W. McArthur. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56:1453–1463, 1984.Google Scholar
- Kaymakcalan, S. and L.A. Woods. nalorphine-induced abstinence syndrome in morphine tolerant rats. J. Pharmac. Exp. Ther. 117:112–116, 1956.Google Scholar
- 49.Martin, W.R., A. Wikler, C.G. Eades and F.T. Pescor. Tolerance to and physical dependence on morphine in rats. Psychoparmacologia 4: 247–260, 1963.Google Scholar
- McMurray, R.G., D.S. Sheps and D.M. Guinan. Effects of naloxone on maximal stress testing in females. J. Appl. Physiol. Respirat. Envion. Exercise Physiol. 56:436–440, 1984.Google Scholar
- 51.Eiden, L.E. and J.A. Ruth. Enkephalins modulate the responsiveness of rat atria in vitro to norepinephrine. Peptides. 3: 475–478, 1982.Google Scholar
- 52.Haier, R.J., K. Quaid, and J.C. Mills. Naloxone alters pain perception after jogging. Psychiatry Research 5: 231–232, 1981.Google Scholar