Advertisement

Opioid Peptide Effects on Leukocyte Migration

  • S. Lori Brown
  • Sei Tokuda
  • Linda C. Saland
  • Dennis E. Van Epps

Abstract

The recognition that morphine bound stereospecifically to receptors in the brain to exert its effects led to a concerted search for an endogenous ligand for the opiate receptor (Terenius and Wahlstrom, 1975). In 1975, peptides which bound to the opiate receptor were isolated from porcine brain extracts and characterized (Hughes et al., 1975; Hughes et al., 1976). The first opioid peptides characterized were the pentapeptides methionine-and-leucine enkephalin (met- and leu-enkephalin). Simultaneously, a larger (31 amino acid), more active peptide containing the amino acid sequence of met-enkephalin as its first 5 N-terminal amino acids was isolated from porcine and camel pituitary and was named beta-endorphin (a contraction for “endogenous morphine”) (Teschemacher et al., 1975; Li and Chung, 1976). Beta-endorphin and alpha-endorphin (amino acids 1–16 of beta-endorphin), gamma-endorphin (amino acids 1–17 of beta-endorphin), (Ling et al., 1976), as well as other neuropeptides, may arise from a 31 Kd glycoprotein, the proopiomelanocortin molecule (reviewed by Frederickson and Geary, 1982). The discovery that beta-endorphin is released from the pituitary along with the steroidogenic hormone, adrenocorticotropin (ACTH) in response to acute stress suggests that in addition to its numerous actions in the central nervous system, beta-endorphin, like ACTH, also has peripheral hormonal effects (Guillemin et al., 1977; Bossier et al., 1977). The release of both ACTH and beta endorphin may be under the control of the hypothalamic peptide, corticotropin releasing factor (CRF) in some species (Hook et al, 1982 and Knepel et al, 1984).

Keywords

Opioid Peptide Opiate Receptor Beta Endorphin Migration Index Corticotropin Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, S., Brown, Z. W., and Amit, Z., 1980, The role of endorphins in stress: Evidence and speculations, Neurosci. Biobehay. Rev., 4: 77.Google Scholar
  2. Ausiello, C. M., and Roda, L. G., 1984, Leu-enkephalin binding to cultured human T lymphocytes, Cell Biol. Intern. Rep., 8: 97.Google Scholar
  3. Badawy, A. A., Evans,M., Punjani, N. F. and Morgan, C. J., 1983, Does naloxone always act as an opiate antagonist? Life Sci., 33 (suppl.):739.Google Scholar
  4. Baldwin, F., The reticuloendothelial system. A comprehensive treatise, j: Vol. 1 “Morphology, Microglia and Brain Macrophages,” I. Carr and W. T. Daems, eds., Plenum Press, New York (1980).Google Scholar
  5. Barchas, J. D., Akil, H., Elliottt, G. R., Holman, R. B., and Watson, S. J., 1978, Behavioral neurochemistry: Neuroregulators and behavioral states, Science, 200: 964.Google Scholar
  6. Bleier, R., and Albrecht, R., 1980, Supraependymal macrophages of third ventricle of hamster: Morphological, functional and histochemical characterization in Situ and in culture, J. Comp. Neurol., 192: 489.Google Scholar
  7. Bocchini, G., Bonanno, G., and Canevari, A., 1983, Influence of morphine and naloxone on human peripheral blood T lymphocytes, Drug and Alchol. Depend., 11: 233.Google Scholar
  8. Bonney, R. J., Naruns, P., Davies, P., and Humes, J. L., 1979, Antigen-antibody complexes stimulate the synthesis and release of prostaglandins by mouse peritoneal macrophages, Prostaglandins, 18: 605.PubMedCrossRefGoogle Scholar
  9. Boyden, S. V., 1962, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes., J. Exp. Med., 115: 453.Google Scholar
  10. Brown, S. L., and Van Epps, D. E., 1985, Suppression of T-lymphocyte chemotactic factor production by the opioid peptides beta endorphin and met enkephalin, J Immunol, 134: 3384.Google Scholar
  11. Casale, T. B., Bowman, S., and Kaliner, M., 1984, Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: Evidence for opiate and non-opiate receptor participation, J. Allergy Clin. Immunol., 73: 775.Google Scholar
  12. Center, D. M., and Cruikshank, W., 1982, Modulation of lymphocyte migration by human lymphokines. Identification and characterization of chemoattractant activity for lymphocytes from mitogenstimulated mononuclear cells, J. Immunol., 128: 2563.Google Scholar
  13. Cianciolo, G. J., and Snyderman, R., 1981, Monocyte responsiveness to chemotactic stimuli is a property of a subpopulation of cells that can respond to multiple attractants, J. Clin. Invest., 67: 60.Google Scholar
  14. Clement-Jones, V., Lowry, P. J., Rees, L. H., and Besser, G. M., 1980, Met enkephalin circulates in human plasma, Nature, 283: 295.PubMedCrossRefGoogle Scholar
  15. Cohen, M., Pickard, D., Dubois, M., Roth, Y. F., Naber, D., and Bunney, W. E. Jr., 1981, Surgical stress and endorphins, Lancet, 1: 213.PubMedCrossRefGoogle Scholar
  16. Colt, E. W., Wardlaw, S. L., and Frantz, A. G., 1981, The effects of running on plasma beta endorphin, Life Sci., 28: 1637.PubMedCrossRefGoogle Scholar
  17. Cosontos, K., Rust, M., Hollt, V., Mahr, W., Kromer, W., and Teschemacher, H.J., 1979, Elevated plasma beta endorphin levels in pregnant women and their neonates, Life Sci., 25: 835.CrossRefGoogle Scholar
  18. Cruikshank, W., and Center, D. M., 1982, Modulation of lymphocyte migration by human lymphokines. II. Purification of a lynphotactic factor, J. Immunol., 128: 2569.Google Scholar
  19. Dubois, M., Pickar, D., Cohen, M. R., Roth, Y. F., Macnamara, T., and Bunney, W. E. Jr., 1981, Surgical stress in humans is accompanied by an increase in plasma beta endorphin immunoreactivity, Life Sci., 29: 1249.PubMedCrossRefGoogle Scholar
  20. El-Naggar, A., Van Epps, D. E., and Williams, R. C. Jr., 1982, A human lymphocyte chemotactic factor produced by the mixed lymphocyte reaction, J. Lab. Clin. Med., 100: 4.Google Scholar
  21. Faith, R. E., Liang, H. J., Murgo, A. J., and Plotnikoff, N. P., 1984, Neuroimmunomodulation with enkephalins: Enhancement of human natural killer ( NK) cell activity An vitro, Clin. Immutol. and Immuuopath., 31: 412.Google Scholar
  22. Ferreira, S. H., and Nakamura, M., 1979, Prostaglandin hyperalgesia: The peripheral analgesic activity of morphine, enkephalins, and opioid antagonists, Prostagland., 18: 191.Google Scholar
  23. Fischer, E. G., and Falke, N. E., 1984, Beta-endorphin modulates immune function, Psychother. Psychosom., 42: 195.Google Scholar
  24. Fjellner, B., and Hagermark, O., 1982, Potentiation of histamine-induced itch and flare responses in human skin by the enkephalin analogue FK 33–824, beta-endorphin, and morphine, Arch. Derm. Res., 274: 29.Google Scholar
  25. Fraioli, F., Moretti, C., Paolucci, D., Alicicco, E., Crescenzi, F., and Fortunio, G., 1980, Physical exercise stimulates marked concomitant release of beta endorphin and adrenocorticotropic hormone ( ACTH) in peripheral blood in man, EKperientia, 36: 987.Google Scholar
  26. Frederickson, R. C. A., and Geary, L. E., 1982, Endogenous opioid peptides: Review of physiological, pharmacological and clinical aspects, Progress in Neurobiol., 19: 19.Google Scholar
  27. Froelich, C. J., and Bankhurst, A. D., 1984, The effect of beta endorphin on natural cytotoxicity and antibody dependent cellular cytotoxicity, Life Sci., 35: 261.PubMedCrossRefGoogle Scholar
  28. Gee, A. P., 1984, Advantages and limitations of methods for measuring cellular chemotaxis and chemokinesis, $ol. Cell. Biochem., 62: 5.Google Scholar
  29. Genazzani, A. R., Facchinetti, F., and Parrini, D., 1981, betalipotrophin and beta endorphin plasma levels during pregnancy, Clin. Endocrin., 14:409.Google Scholar
  30. Giagnoni, G., Santagostino, A., Senini, R., Fumagalli, P., and Cori, E., 1983, Cold stress in the rat induces parallel changes in plasma and pituitary levels of endorphin and ACTH, Pharm Res. Comm., 15: 15.Google Scholar
  31. Gilman, S. C., Schwartz, J. M., Millner, R. J., Bloom, F. E., and Feldman, J.D., 1982, Beta endorphin enhances lymphocyte proliferative responses, Proc. Natl. Acad. Sci., 79: 4226.Google Scholar
  32. Goland, R. S., Wardlaw, S. L., Stark, R. I., and Frantz, A. G., 1981, Human plasma beta endorphin during pregnancy, labor and delivery, J. Clin. Endocrin. Metab., 52: 74.Google Scholar
  33. Goodwin, J. S., Bromberg, J., Staszak, C., Kaszubowski, P., Messner, R. P., and Neal, J. F., 1981, Effect of physical stress on sensitivity of lymphocytes to inhibition of prostaglandin E2, sL Immunol., 132: 246.Google Scholar
  34. Goodwin, J.S., and Messner, R. P., 1979, Sensitivity of lymphocytes to prostaglandin E increases in subjects over age 70, J. Clin. Invest., 64: 434.Google Scholar
  35. Guillemin, R., Vargo, T., Bossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F., 1977, Beta endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland, Science, 197: 1367.PubMedCrossRefGoogle Scholar
  36. Hazum, E., Chang, K., and Cuatrecasas, P., 1979, Specific nonopiate receptors for beta endorphin, Science, 205: 1033.Google Scholar
  37. Hook, V. Y. H., Heisler, S., Sabol, S. L., and Axelrod, J., 1982, Corticotropin releasing factor stimulates adrenocorticotropin and beta-endorphin release from AtT-20 mouse pituitary tumor cells, Biochem. Biophys. Res. Comm., 106: 1364.Google Scholar
  38. Hoover, R. L., Folger, R., Haering, W. A., Ware, B. R., and Karnovsky, M. J., 1980, Adhesion of leukocytes to endothelium: Roles of divalent cations, surface changes, chemotactic agents and substrate, J. Cell. Science, 45: 73.Google Scholar
  39. Hosobuchi, Y., and Li, C. H., 1978, The analgesic activity of human Beta-endorphin in man, Communications in Psychopharmacology, 2: 33–37.PubMedGoogle Scholar
  40. Hughes, J., Beaumont, A., Fuentes, J. A., Malfroy, B., and Unsworth, C., 1980, Opioid peptides: Aspects of their origin, release and metabolism, J. Exp. Biol., 89: 239.Google Scholar
  41. Hughes, J., Smith, T. W., and Kosterlitz, H. W., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature, 258: 577.PubMedCrossRefGoogle Scholar
  42. Hughes, J., Smith, T., Morgan, B., and Fothergill, L., 1975, Purification and properties of enkephalin—the possible endogenous ligand for the morphine receptor, Life Sci., 16: 1753.PubMedCrossRefGoogle Scholar
  43. Hughes, S. C., Rosen, M. A., Shnider, S. M., Abboud, T. K., Stefani, S. J., and Norton, M., 1984, Maternal and neonatal effects of epidural morphine for labor and delivery, Anesthesia and Analgesia, 63: 319–324.PubMedCrossRefGoogle Scholar
  44. Johnson, H. M., Smith, E. M., Torres, B. A., and Blalock, J. E., 1982, Regulation of the in, vitro antibody response by neuroendocrine hormones, Proc. Natl. Acad. Sci., 79: 4171.Google Scholar
  45. Kay, N., Allen, J., and Morley, J. E., 1984, Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity, Life Sci., 35: 53.PubMedCrossRefGoogle Scholar
  46. Khansari, N., Whitten, H. D., and Fudenberg, H. H., 1984, Phencyclidine-induced immunodepression, Science, 225: 76.PubMedCrossRefGoogle Scholar
  47. Kilpatrick, D.L., Lewis, R.V., Stein, S., and Udenfriend, S., 1980, Release of enkephalins and enkephalin containing polypeptides from perfused beef adrenal glands, Proc. Natl. Acad. Sci., 77: 7473.Google Scholar
  48. Knepel, W., Homolka, L., Vlaskovska, M., and Nutto, D., 1984, Stimulation of adrenocorticotropin,/beta-endorphin release by synthetic ovine corticotropin-releasing factor in vitro. Enhancement by various vasopressin analogs, Neuroendocrin., 38: 344.Google Scholar
  49. Kurland, J. I., and Bockman, R., 1978, Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages, J. Exp. Med., 147: 952.Google Scholar
  50. Li, C. H., and Chung, D., 1976, Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands, Froc. Natl. Acad. Sci. ( USA ), 73: 1145.Google Scholar
  51. Ling, N., Burgus, R., and Guillemin, R., 1976, Isolation, primary structure, and synthesis of alpha-endorphin and gamma-endorphin, two peptides of hypothalmic-lypophysial origin with morphomimetic activity, Proc. Natl. Acad. Sci., 73: 3942.Google Scholar
  52. Livett, B. G., Day, R., Elde, R. P., and Howe, P. R. C., 1982, Co-storage of enkephalins and adrenaline in the bovine adrenal medulla, Neuroscience, 7: 1323.PubMedCrossRefGoogle Scholar
  53. Lolait, S. J., Lim, A. T., Toh, B. H., and Fonder, J.W., 1984, Immunoreactive beta-endorphin in a subpopulation of mouse spleen macrophages, J Clin Invest, 73: 277.PubMedCrossRefGoogle Scholar
  54. Lopker, A., Abood, L. G., Boss, W., and Lionetti, F. J., 1980, Stereoselective muscarinic, acetylcholine and opiate receptors in human phagocytic leukocytes, %ocher’. Pharmacol., 29: 1361.Google Scholar
  55. Mathews, P. M., Froelich, C. J., Sibbitt, W. L., Jr., and Bankhurst, A. D., 1983, Enhancement of natural cytotoxicity by beta endorphin, J. ol., 130: 1658.Google Scholar
  56. McCain, H. W., Lamster, I. B., Bozzone, J. M., and Grbic, J. T., 1982, Beta endorphin modulates human immune activity via non-opiate receptor mechanisms, Life Sci., 31: 1619.PubMedCrossRefGoogle Scholar
  57. McCluskey, R. T., Benacerraf, B., and MkCluskey, J. W., 1963, Studies on the specificity of the cellular infiltrate in delayed hypersensitivity reactions, J. Immunol,, 90: 466.PubMedGoogle Scholar
  58. Mehrishi, J. N., and Mills, I. H., 1983, Opiate receptors on lymphocytes and platelets in man, Clin. Immunol. and Immunopath., 27: 240.Google Scholar
  59. Miller, G.C., Murgo, A. J., and Plotnikoff, N. P., 1983, Enkephalinsenhancement of active T-cell rosettes from lymphoma patients, Clin.Immunol. Immunopath., 26: 446.Google Scholar
  60. Miller, G. C., Murgo, A. J., and Plotnikoff, N. P., 1984, Enkephalinsenhancement of active T-cell rosettes from normal volunteers, Clin. Immun. and Immunopath., 31: 132.Google Scholar
  61. Mueller, G.P., 1981, Beta endorphin immunoreactivity in rat plasma: Variations in response to different physical stimuli, Life Sci., 29: 1669.Google Scholar
  62. Nakao, K., Nakai, Y., Jingami, H., Oki, S., Fukata, J., Imura, H., 1979, Substantial rise of plasma beta endorphin levels after insulin induced hypoglycemia in human subjects, J. Clin. Endocrin. Metab., 49: 838.Google Scholar
  63. Nelson, R. D., McCormack, R. T., Fiegel, V. D., and Simmons, R. L., 1978, Chemotactic deactivation of human neutrophils: Evidence for non-specific and specific components, Infect. Immun., 22: 441.Google Scholar
  64. O’Flaherty, J. T., Showell, H. J., Becker, E. L., and Ward, P. A., 1978, Substances which aggregate neutrophils, Am. J. Pathol., 92: 155.PubMedGoogle Scholar
  65. Olson, G. A., Olson, R. D., and Kastin, A. J., 1984, Endogenous opiates: 1983, peptides, 5: 975.Google Scholar
  66. Oyama, T., Matsuki, A., Taneichi, T., Ling, N., and Guillemen, R., 1980, Beta-endorphin in obstetric analgesia, Am. J. Obstet. Gynecol., 137: 613–617.Google Scholar
  67. Pelto-Huikko, M., Salminen, T., and Hervonen, A., 1982, Enkephalin-like im unoreactivity is restricted to the adrenaline cells in the hamster adrenal medulla, Histochemistry, 73: 493.PubMedCrossRefGoogle Scholar
  68. Plotnikoff, N. P., and Miller, G. C., 1983, Enkephalins as imnunomodulators, Int. J. Immunopharm., 5: 437.Google Scholar
  69. Prete, P., and Levin, E., 1985, In vitro effect of neuropeptides on human natural killer and cytotoxic T-cell function and T-cell subsets, Clin. Res., (abstr.) 33: 54A.Google Scholar
  70. Puolakka, J., Kauppila, A., Leppaluoto, J., and Vuolteenaho, 0., 1982, Elevated beta endorphin irnunoreactivity in umbilical cord blood after complicated delivery, Acta Obstet. Gynecol. Scand., 61: 513.Google Scholar
  71. Bossier, J., French, E. D., Rivier, C., Ling, N., Guillemin, R., and Bloom, F. E., 1977, Footshock induced stress increases beta endorphin levels in blood but not brain, Nature, 270: 618.CrossRefGoogle Scholar
  72. Ryder, S. W., and Eng., J., 1981, Radioim(unoassay of leucine enkephalin-like substance in human and canine plasma, J. Clin. Endocrin. Metab., 52: 367.Google Scholar
  73. Saland, L. C., Van Epps, D. E., Ortiz, E., and Samora, A., 1983, Acute injections of opiate peptides into the rat cerebral ventricle; a macrophage-like cellular response, Brain Res. Bull, 10: 523.Google Scholar
  74. Saland, L. C., Orti, E., and Samora, A. 1984. Chronic infusion of opiate peptides to rat cerebrospinal fluid with osmotic pummpss, Anat. Rec., 210: 115.Google Scholar
  75. Shanks, M.M., Clement-Jones, V., Linsell, C.J., Mullen, P.E., Rees, L.H., and Besser, G.M., 1981, A study of 24 hour profiles of plasma met enkephalin in man, Brain Res., 212: 403.Google Scholar
  76. Shavit, Y., Lewis, J. W., Terman, G. W., Gale, R. P., and Liebeskind, J. C., 1984, Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity, Science, 223: 188.PubMedCrossRefGoogle Scholar
  77. Showell, H. J., Freer, R. J., Zigmond, S. M., Schiffman, E., Aswanikumar, S., Corcoran, B., and Becker, E. L., 1976. The structure activity relationship of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils, J. Exp. Med., 143: 1154.Google Scholar
  78. Simpkins, C. O., Dickey, C. A., and Fink, M. P., 1984, Human neutrophil migration is enhanced by beta-endorphin, Life Sci., 34: 2251.PubMedCrossRefGoogle Scholar
  79. Smith, E.M., and Blalock, J.E., 1981, Human lymphocyte production of corticotropin and endorphin-like substances: Association with leukocyte interferon, Proc. Natl. Acad. Sci., 78: 7530.Google Scholar
  80. Smith, J.R., and Simon, E.J., 1981, Endorphins, opiate receptors, and their evolving biology, Pathobiol. Ann., 11: 87.Google Scholar
  81. Stoelting, R. K., 1980, Opiate receptors and endorphins: Their role in anesthesiology, Anesthesia and Analgesia, 59: 874–880.Google Scholar
  82. Terenius, L., and Wahlstrom, A., 1975, Search for an endogenous ligand for the opiate receptor, Acta Physiol. Scand., 94: 74.Google Scholar
  83. Teschemacher, H., Opheim, K. E., Cox, B. M., and Goldstein, A., 1975, A peptide like substance from the pituitary that acts like morphine, Life Sci., 16: 1771.PubMedCrossRefGoogle Scholar
  84. Tubaro, E., Borelli, G., Croce, C., Cavallo, G., and Santiangelli, C., 1983, Effect of morphine on resistance to infection, J. Infect. Dis., 148: 656.Google Scholar
  85. TUrkall, R. M., Denison, R. C., and Tsan, M., 1982, Degradation and oxidation of methionine enkephalin by human neutrophils, J. Lab. Clin. Med., 99: 418.Google Scholar
  86. Van Epps, D. E., 1982, Mediators and modulators of human lymphocyte chemotaxis, Agents and Actions, 12 (suppl.): 217.Google Scholar
  87. Van Epps, D. E., Durant, D. A., and Potter, J. W., 1983a, Migration of human helper/inducer T cells in response to supernatants from Con A-stipulated suppressor/cytotoxic T cells, J. Immunol., 131: 697.PubMedGoogle Scholar
  88. Van Epps, D. E., Potter, J., and Brown, S. L., 1985, Production and regulation of human T-lymphocyte Chemotactic factor (LCF), “Mediators of Inflammation,” G. A. Higgs and T. J. Williams, eds., MacMillan, London (in press).Google Scholar
  89. Van Epps, D. E., Potter, J. W., and Durant, D. A., 1983b, Production of human lymphocyte chemotactic factor by T-cell subpopulations,,Zz Imnunol., 130: 2727.Google Scholar
  90. Van Epps, D. E., and Saland, L., 1984, Beta endorphin and met enkephalin stimulate human peripheral blood mononuclear cell chemotaxis, sL. Imiunol., 132: 3046.Google Scholar
  91. Van Epps, D. E., Saland, L., Taylor, C., and Williams, R. C. Jr., 1983c, In vitro and in vivo effects of beta endorphin and met enkephalin on leukocyte locomotion, Frog. Brain Res., 59: 361.Google Scholar
  92. Vincent, J. P., Cavey, D., Kamenka, J. M., Geneste, P., and Lazdunski, M., 1978, Interaction of phencyclidines with the mxscarinic and opiate receptors in the central nervous system, Frain Res., 152: 176.Google Scholar
  93. Wardlaw, S. L., Stark, R. I., Daniel, S., Frantz, A. G., 1981, Effects of hypoxia on beta endorphin and beta lipotropin release in fetal, newborn and maternal sheep, Endocrin., 108: 1710.CrossRefGoogle Scholar
  94. Weber, R. J., and Pert, C. B., Opiatergic modulation of immune system, in: “Central and Peripheral Endorphins: Basic and Clinical Aspects,” E. E. Muller and A. R. Genazzini, eds., Raven Press, ( New York ) (1984).Google Scholar
  95. Wilkes, M. M., Stewart, R. D., Bruni, J. F., Quigley, M. E., Yen, S. S. C., Ling, N., and Chretien, M., 1980, A specific homologous radioimpunoassay for human beta endorphin: Diect measurement in biological fluids, J. Clin. Endocrin. Metab., 50: 309.Google Scholar
  96. Wilkinson, P. C., Haston, W. S., and Shields, J. M., 1982. Some determinants of the locomotor behavior of phagocytes and lymphocytes in vitro, Clin. Exp. Immun., 50: 461.Google Scholar
  97. Wybran, J., Appelboom, T., Famaey, J. P., and Govaerts, A., 1979, Suggestive evidence for receptors for morphine and met enkephalin on normal human blood T lymphocytes, J. Immunol., 123: 1068.PubMedGoogle Scholar
  98. Yamasaki, Y., Shimanura, Kizu, A., Nakagawa, M., and Ijichi, H., 1982, IgE-mediated C-serotonin release from rat mast cells modulated by morphine and endorphins, Life Sci., 31: 471.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • S. Lori Brown
    • 1
  • Sei Tokuda
    • 2
  • Linda C. Saland
    • 3
  • Dennis E. Van Epps
    • 1
  1. 1.Departments of Pathology and MedicineThe University of New Mexico School of MedicineAlbuquerqueUSA
  2. 2.Department of MicrobiologyThe University of New Mexico School of MedicineAlbuquerqueUSA
  3. 3.Department of AnatomyThe University of New Mexico School of MedicineAlbuquerqueUSA

Personalised recommendations