Effects of Morphine Opiates on Immune Function

  • Hikmet Koyuncuoğlu
  • Mehmet Güngör

Abstract

The general anesthesia and surgery on the morphine opiate addicts,in which total blood volume and blood cell mass had been found to be less than normal, were more problematic and complicated than on the patients and prisoners in similar health conditions (Williams and Oberst, 1946; Isbell, 1947; Eiseman et al., 1964). There is substantial evidence that opiate addicts suffer from a mortality rate considerably higher that what would be expected in relation to their age. The follow-up studies of opiate addicted persons discharged from the treatment institutions reveal that a marked proportion died shortly after discharge although they were mostly young adults. Among the causes of death found in postmortem examinations the major medical complications of opiate addiction mostly related to the use and administration routes such as abscesses, cellulitis, endocarditis, hepatitis, pneumonia, septic pulmonary embolism, tetanus, thrombophlebitis etc. were called up (Tolentino et al., 1961; Cherubin, 1967; Louria et al., 1967; Cherubin et al., 1968; Espiritu and Medina, 1980; Tarr, 1980; Sequeira et al., 1982) ignoring the fact that opiate addicts are highly prone to infectious diseases and death (Cherubin, 1967).

Keywords

Growth Hormone Luteinizing Hormone Anorexia Nervosa Growth Hormone Release Narcotic Analgesic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlqvist, J., 1976, Endocrine influences on lymphatic organs, immune responses, inflammation and autoimmunity, Acta Endocrinol. ( Copenhagen ), Suppl., 206.Google Scholar
  2. Ahlqvist, J., 1981, Hormonal Influences on Immunologic and Related Phenomena, in: “Psychoneuroimmunology”, R. Ader and R.A. Good, Eds., Academic Press, New York.Google Scholar
  3. Akera, T., and Brody, T.M., 1968, The addiction cycle to narcotics in the rat and its relation to catecholamines, Biochem. Pharmacol., 17: 675.Google Scholar
  4. Algeri, S., and Costa, E., 1971, Physical dependence on morphine fails to increase serotonin turnover in rat brain, Biochem.Pharmacol., 20: 877.PubMedCrossRefGoogle Scholar
  5. Amkraut, A., and Solomon, G.F., 1974, From the symbolic stimulus to the pathophysiologic response: Immune mechanisms, Int.J.Psychiatry Med., 5: 542.Google Scholar
  6. Anderson, T.R., and Slotkin, T.A., 1975, Maturation of the adrenal medulla -IV. Effects of morphine, Biochem.Pharmac. 24: 1469.CrossRefGoogle Scholar
  7. Axelrod_, A.E., and Trakatellis, A.C., 1964, Relationship of pyrodoxine to immunological phenomena, Vitamins Hormones 22: 591.CrossRefGoogle Scholar
  8. Beleslin, D., and Polak, R.L., 1965, Depression by morphine and chloralose of acetylcholine release from the cat’s brain, J.Physiol.(Lond.) 177: 411.Google Scholar
  9. Belluzzi, J.D., and Stein, L., 1978, Do enkephalin systems mediate drive reduction? Soc.Neurosci.Abstr., 8: 405.Google Scholar
  10. Blankstein, J., Reyes, F.I., Winter, J.S.D., and Faiman, C., 1980, Effects of naloxone upon prolactin and cortisol in normal women, Proc. Soc.Exp.Biol.Med. 164:363.Google Scholar
  11. Bourne, H.R., Lichtenstein, L.M., Melmon, K.L., Henney, C.S., Weinstein, Y., and Shearer, G.M., 1974, Modulation of inflammation and immunity by cyclic AMP, Science 184: 19.Google Scholar
  12. Brown, M., and Vale, W., 1975, Growth hormone release in the rat: Effects of somatostatin and thyrotropin-releasing factor, Endocrinology 96: 1333.Google Scholar
  13. Brown, S.M., Stimmel, B., Taub, R.N., Kochwa, S., and Rosenfield, R.E., 1974, Immunologic dysfunction in heroin addicts, Arch.Intern.Med. 134: 1001.Google Scholar
  14. Bruni, J.F., Van Vugt, D., Marshall, S., and Meites, J. 1977, Effects of naloxone, morphine and methionine enkephalin on serum prolactin, luteinizing hormone, follicle stimulating hormone, thyroid stimulating hormone and growth hormone, Life Sci. 21: 461.Google Scholar
  15. Buchenauer, D., Turnbow, M., and Peters, M.A., 1974, Effects of chronic methadone administration of pregnant rats and their offspring, J.Pharmac.Exp.Ther. 189: 66.Google Scholar
  16. Byron, J.W., 1975, Manipulation of the cell cycle of the hamopcietic stem cell, Exp.Hematol. 3: 44.Google Scholar
  17. Byron, J.W., 1976, Cyclic nucleotides and the cell cycle of the hematopoietic stem cell. in: “Cyclic Nucleotides and the Regulation of Cell Growth”, M.Abou-Sade, ed., Dowden, Hutchinson and Ross, Pennsylvania.Google Scholar
  18. Caisova, D., Stajner, A., and Suva, J., 1980 a, Modification of fat and carbohydrate metabolism by neurohypophyseal hormones: I.Effects of lysine-vasopressin on non-esterified fatty acid, glucose, triglyceride and cholesterol levels in the serum of female rats, Endokrinologie 76:315.Google Scholar
  19. Caisova, D., Suva, J. and Stajner, A., 1980 b, Modification of fat and carbohydrate metabolism by neurohypophyseal hormones: II. Effect of lysine-vasopressin on non-esterified fatty acid, glucose triglyceride and cholesterol levels in the serum of male rats, Endoktinologie 76:326.Google Scholar
  20. Chance, W.T., and Rosecrans, J.A., 1977, Inhibition of drinking by intrahypothalamic administration of morphine, Nature 270: 167Google Scholar
  21. Chandra, R.K., 1983, Nutrition and immune responses, Can.J.Physiol.Pharmacol. 61: 290.CrossRefGoogle Scholar
  22. Cherubin, C.E., Baden, M., Kavaler, F., Lerner, S., and Cline, W., 1968, Infective endocarditis in narcotic addicts, Ann.Int.Med. 69: 1091.Google Scholar
  23. Cherubin, C.E., 1967, The medical sequelae of narcotic addiction, Ann.Int. Med., 67: 23.PubMedCrossRefGoogle Scholar
  24. Cicero, T.J., and Badger, T.M., 1977, A comparative analysis of the effects of narcotics, alcohol and the barbiturates on the hypothalamic-pituitary-gonadalaxis, Adv.Exp.Med.Biol. 85: 95.Google Scholar
  25. Cicero, T.J., Meyer, E.R., and Bell, R.D., 1976, Effects of morphine on serum testosterone and luteinizing hormone levels and on secondary sex organs of the male rat, Endocrinology 98: 367.Google Scholar
  26. Cicero, T.J., Meyer, E.R., and Wiest, W.A., 1975, Effects of chronic morphine administration on the reproductive system of the male rat, J.Pharmacol.Exp.Ther. 192: 542.Google Scholar
  27. Clouet, D.H., and Ratner, M., 1967, Th effect of the administration of morphine on the incorporation of C-leucine into the proteins of rat brain in vivo, Brain Res., 4: 33.Google Scholar
  28. Clouet, D.H., and Ratner, M., 1?4,R, The effect of morphine administration on the incorporation of C leucine into protein in cell-free system from rat liver and brain, J.Neurochem., 15:17.Google Scholar
  29. Clouet, D.H., and Ratner, M., 1970, Catecholamine biosynthesis in brains of rats treated with morphine, Science 168: 854.Google Scholar
  30. Cochin, J., and Axelrod, J., 1959, Biochemical and pharmacological changes in the rat following chronic administration of morphine, nalorphine and normorphine, J.Pharmacol.Exp.Ther. 125: 105.Google Scholar
  31. Comsa, J., Leonhardt, H., and Schwarz, J.A., 1975, Influence of the thymus -corticotropin-growth hormone interaction on the rejection of skin allografts in the rat, Ann.N.Y.Acad.Sci. 249: 387.Google Scholar
  32. Coraggio, F., Coto, V., Oriente, P., DetLongis, G., and Galeota, C.A., 1962, Influenza del 19-norandrostenolone sulla produzione di anticorpi antimorbillosi nel coniglio, Boll.Soc.Ital.Biol.Sper. 38: 1316.Google Scholar
  33. Cotzias, G.C., and Tang, L.C., 1977, An adenylate cyclase of brain reflects propensity for breast cancer in mice, Science 197: 1094.Google Scholar
  34. Courtney, N., and Raskind, M., 1983, Vasopressin affects adenylate cyclase activity in rat brain: A possible neuromodulator, Life Sci. 32: 591.Google Scholar
  35. Csaba, G., Sudar, F., and Dobozy, 0., 1977, Triiodothyronine receptors in lymphocytes of newborn and adult rats, Horm.Metab.Res. 9: 499.CrossRefGoogle Scholar
  36. Datta, R.K., and Antopol, W., 1972, Inhibitory effect of chronic administration of morphine on uridine and thymidine incorporating abilities of mouse liver and brain subcellular fractions, Toxicol.appl.Pharmacol. 23: 75.Google Scholar
  37. Datta, R.K., and Antopol, W., 1973, Effect of chronic administration of morphine on mouse brain aminoacyl-tRNA synthetase and tRNA-amino acid binding, Brain Res. 53: 373.Google Scholar
  38. Dawis, W.M., and Lin, C.H., 1972, Prenatal morphine effects of survival and behaviour of rat offspring, es.Commun.Chem.Pathol.Pharmacol. 3: 205.Google Scholar
  39. DeBodo, R.C., 1944, The antidiuretic action of morphine, and its mechanism, J.Pharmacol.Exp.Ther., 82: 74.Google Scholar
  40. Denckla, W.D., 1978, Interactions between age and neuroendocrine and immune systems, Fed.Proc.Fed.Am.Soc.Exp.Biol. 37: 1263.Google Scholar
  41. Devoino, L.V., Eremina, O.F.N., and Ilyutchenok, R.Yu., 1970., The role of the hypothalamopituitary system in the mechanism of action of reserpine and 5-hydroxytryptophan on antibody production, Neuropharmacology, 9:67.Google Scholar
  42. Dieckhoff, J., Schneeweiss, B., Schicke, R., and Hübschmann, K., 1965, Tierexperimentelle Untersuchungen über die Antikörperbildung unter gleichzeitiger, Anabol.Applikation,Mschr.Kinderheilk. 113: 468.Google Scholar
  43. Dougherty, T.F., 1952, Effects of hormones on lymphatic tissue, Physiol. Rev., 32: 379.Google Scholar
  44. Edwards, M.W., Brooks, S.L., Gove, C.D., Hems, D.A., and Cawthorne, M.A., 1981, Effects of vasopressin on lipogenesis in obese mice, FEBS Letters, 127: 25.PubMedCrossRefGoogle Scholar
  45. Eiseman, B., Lam, R.C., and Bush, B., 1964, Surgery on the narcotic addict, Ann.Surg. 159: 748.CrossRefGoogle Scholar
  46. Engel, W.K., Trotter, J.L., McFarlin, D.E., and McIntosh, C.L., 1977, Thymic epithelial cell contains acetylcholine receptor, Lancet, 1: 1310.PubMedCrossRefGoogle Scholar
  47. Eremina, O.F., and Devoino, L.V., 1973, Production of humoral antibodies in rabbits with destruction of the nucleus of the midbrain raphe, Bull.Exp.Biol.Med.(Engl Transl.), 75: 149.Google Scholar
  48. Espiritu, M.B., and Medina, J.E., 1980, Complications of heroin injections of the neck, Laryngoscope 90: 1111.CrossRefGoogle Scholar
  49. Fauci, A.S., 1975, Mechanisms of corticosteroid action on lymphocyte sub-populations. I.Redistribution of circulating T and B lymphocytes to the bone marrow, Immunology, 28: 669.PubMedGoogle Scholar
  50. Feigen, G.A., Smith, B.H., Dix, C.E., Flynn, C.J., Peterson, N.S., Rosenberg, L.T., Pavlovic, S., and Leibovitz, B., 1982, Enhancement of antibody production against systemic anaphylaxis by large doses of vitamin C, Res.Comm.Chem.Path.Pharmac. 38: 313.Google Scholar
  51. Fennessy, M.R., and Lee, J.R. 1972, Comparison of the dose-response effects of morphine on brain amines, analgesia and activity in mice, Brit.J.Pharmacol. 45: 240.Google Scholar
  52. Filipp, G., 1973, Mechanism of suppressing anaphylaxis thorough electrolytic lesion of the tuberal region of the hypothalamus, Ann.Allergy 31: 272.Google Scholar
  53. Filipp, G., and Mess, B., 1969, Role of the adrenocortical system in suppressing anaphylaxis after hypothalamic lesion, Ann.Allergy, 27: 607.PubMedGoogle Scholar
  54. Friedler, C., and Cochin, J., 1972, Growth retardation of offspring of female rats treated with morphine prior to conception, Science 175:654.Google Scholar
  55. Fujiwara, M., Muryobayashi, T., and Shimamoto, K., 1966, Histochemical demonstration of monoamines in the thymus of rats, Jpn.J.Pharmacol. 16: 493.Google Scholar
  56. Fukui, K., and Takagi, H., 1972, Effect of morphine on the cerebral contents of metabolites of dopamine in normal and tolerans mice: its possible relation to analgesic action, Brit.J.Pharmacol. 44: 45.Google Scholar
  57. Geber, W.F., Lefkowitz, S.S., and Hung, C.Y., 1976 a, Action of naloxone on the interferone lowering activity of morphine in the mouse, Pharmacology 14:322.Google Scholar
  58. Geber, W.F., Lefkowitz, S.S., and Hung, C.Y., 1976 b, Role of spleen in the interferon-lowering action of morphine, Gen.Pharmac. 7:255.Google Scholar
  59. Geber, W.F., and Schramm, L.C., 1974, Postpartum weight alteration in hamster offspring from females injected during pregnancy with either heroin, methadone, a composite drug mixture, or mescaline, Am.J. Obstet.Gynecol. 120: 1105.PubMedGoogle Scholar
  60. Geber, W.F., and Schramm, L.C., 1975, Congenital malformation of the central nervous system produced by narcotic analgesics in the hamster, Am.J. Obstet.Gynecol. 123:705.Google Scholar
  61. George, R., 1971, Hypothalamus: Anterior Pituitary Gland. in: “Narcotic Drugs, Biochemical Pharmacology”, D.M.Clouet, ed., Plenum Press, NewYork.Google Scholar
  62. George, R., and Lomax, P., 1965, The effects of morphine, chlorpromazine and reserpine on pituitary-thyroid activity in rats, J.Pharmacol. Exp.Ther., 150: 129.Google Scholar
  63. George, R., and Way, E.L., 1959, The role of the hypothalamus in pituitary -adrenal activation and antidiuresis by morphine, J.Pharmacol.Exp. Ther., 125: 111.Google Scholar
  64. Ghione, M., 1958, Anti-infective action of an anabolic steroid, Proc.Soc. Exp.Biol.Med., 97: 773.Google Scholar
  65. Gisler, R.H., 1974, Stress and the hormonal regulation of the immune response in mice, Psychother.Psychosom. 23: 197.CrossRefGoogle Scholar
  66. Gisler, R.H., and Schenkel-Hullinger, L., 1971, Hormonal regulation of the immune response. II.Influence of pituitary and adrenal activity on immune responsiveness in vitro, Cell. Immunol. 2:646.Google Scholar
  67. Goldberg, N.D., Haddox, M.K., Estensen, R., White, J.G., Lopez, C., and Hadden, J.W., 1974, Evidence of a dualism between cyclic GMP and cyclic AMP in the regulation of cell proliferation and other cellular processes, in: “Cyclic AMP, Cell Growth, and the Immune Response”, W.Braun, L.M.Lichtenstein and C.W.Parker, eds., Springer -Verlag, NewYork.Google Scholar
  68. George, R., and Kokka, N., 1976, The Effects of Narcotics on Growth Hormone, ACTH and TSH Secretion, in: “Tissue Responses to Addictive Drugs”Google Scholar
  69. D.M.Ford and D.H.Clouet, eds., Spectrum Publications, NewYork.Google Scholar
  70. Gotch, F.M., Spry, C.J.F., Mowat, A.G., Beeson, P.M., and MacLennan, I.C.M., 1975, Reversible granulocyte killing defect in anorexia nervosa, Clin.Exp.Immunol., 21: 244.PubMedGoogle Scholar
  71. Grandison, S., and GüTTotti, A., 1977, Stimulation of food intake by muscimol and beta-endorphin, Neuropharmacology, 16: 533.PubMedCrossRefGoogle Scholar
  72. Gregoire, C., and Duchateau, G., 1956, Study on lympho-epithelial symbosis in thymus. Reactions of the lymphatic tissue to extracts and to implants of epithelial components of thymus, Arch.Biol. 67: 269.Google Scholar
  73. Gross, R.L., and Newberne, P.M., 1980, Role of nutrition in immunologic function, Physiol.Rev., 1: 188.Google Scholar
  74. Grossman, A., and Besser, G.M., 1982, Opiates control ACTH through a noradrenergic mechanism, Clin.Endocrinology 17: 287.CrossRefGoogle Scholar
  75. Gunne, L.-M., 1963, Catecholamines and 5-hydroxytryptamine in morphine tolerance and withdrawal, Acta physiol.scand. 58:Suppl., 204.Google Scholar
  76. Güngör, M., Genç, E., Sagduyu, H., Eroglu, L. and Koyuncuoglu, H., 1980, Effect of chronic administration of morphine on primary immune response in mice, Experentia 36: 1309.Google Scholar
  77. Güngör, M., Ang, O., Uysal, V., Sagduyu, H., Inanç, D., Ang, M., and Koyuncuoglu, H., Comparison of experimental pyelonephritis in homozygousGoogle Scholar
  78. Brattleboro diabetes insipidus, heterozygous control and normal Wistar rats, Infection (in press).Google Scholar
  79. Hahmeier, W., Fenske, M., Pitzel, L., Holtz, W., and König, A., 1980, Corti- costeroids and testosterone in’adult male pig, Acta Endocrinologica 95: 518.Google Scholar
  80. Hall, N.R., McClure, J.E., Hu, S.-K., Tick, N.T., Seales, C.M., and Goldstein, A.L., 1979, Effects of chemical sympathectomy upon thymus dependent immune responses, Soc.Neurosci.Abstr. 26. 4.Google Scholar
  81. Harmon, B.G., Miller, E.R., Hoeffer, J.A., Ullrey, D.E., and Luecke, R.W., 1963, Relationship of specific nutrient deficiencies to antibody production in swine. I.Vitamin A, J.Nutr. 79: 263.Google Scholar
  82. Harpel, H.S., and Gautieri, R.F., 1968, Morphine-induced malformations, J. Pharm.Sci., 57: 1590.PubMedCrossRefGoogle Scholar
  83. Hayward, A.R., 1977, “Immunodeficiency”, Edward Arnold Ltd, London.Google Scholar
  84. Heboyan, M., and Messeri, E., 1962, Variazioni immunitarie in ratti tenuti a dicta normale e a dicta di Handler, vaccinati con Salmonella typhi e trattati con 4-idrossi-19-nortestosterone-17-ciclopentilpropionato, Rass.Ital.Gastroenter. 11: 590.Google Scholar
  85. Heybach, J.P., and Vernikos, J., 1981, Naloxone inhibits and morphine potentiates the adrenal steroidogenic response to ACTH, Eur.J.Pharmacol., 75: 1.PubMedCrossRefGoogle Scholar
  86. Hoffman, P.M., Robbins, D.S., Nolte, M.T., Gibbs, jr, C.S., and Gajdusek, D.C., 1980, Immunity and immunogenetics in Guamanians with amyotrophic lateral aclerosis (ALS) and Parkinsonism-dementia, J. Supramol.Struct. 8:Suppl. 2.Google Scholar
  87. Hohlweg, W., Knappe, G., and Domer, G., 1961, Tierexperimentelle Untersuchungen ueber den Einfluss von Morphine auf die gonadotrope und thyrectrope Hypophysenfunktion, Endokrinologie 40:152.Google Scholar
  88. Hung,C.Y., Lefkowitz, S.S. and Geber, W.F., 1973, Interferon inhibition by tion of morphine in the rat, Eur.J.Pharmacol. 2: 301.Google Scholar
  89. Idova, C.V., and Devoino, L.V., 1972, Dynamics of formation of M- and antibodies in mice after administration of serotonin and its precursor 5-hydroxtryptophan, Bull.Exp.Biol.Med.(Engl.Transl.) 73: 294.Google Scholar
  90. Inturrisi, C.E., and Fujimoto, J.M., 1968, Studies on the antidiuretic ac-narcotic analgesics, Proc.Soc.Exp.Biol.Med. 142: 106.Google Scholar
  91. Isbell, H., 1947, The effect of morphine addiction on blood plasma and extracellular fluid volumes in man, Public Health Reports 62: 1499.Google Scholar
  92. Jannuzzi, C., and Bassi, A., 1962, Ormoni steroidei ed anticorpopoiesi. Nota III. Potenziamento della vaccinazione antidifterica nel bambino da parte di ormoni anabolizzanti, Boll.Ist.Sieroter.Mii. 41: 221.Google Scholar
  93. Jannuzzi, C., and Bassi, A., 1964, Vaccinazione antitetanica e ormoni anabolizanti, G.Mal.Inf. 16: 748.Google Scholar
  94. Jannuzzi, C., and Gemme, G., 1965, Tentativi di immunizzazione attiva del neonato verso i ceppi enteritogeni di E.coli, G.Mal.Inf. 17: 74.Google Scholar
  95. Jhamandas, K., Phillis, J.W., and Pinsky, C., 1971, Effects of narcotic analgesics and antagonists on the in vivo release of acetylcholine from the cerebral cortex of the cat, Brit.J.Pharmacol. 43:53.Google Scholar
  96. Jose, D.G. and Good, R.A., 1973, Quantitive effects of nutritionally essential amino acid deficiencies upon immune responses to tumors in mice, J.Exp.Med. 137: 1.Google Scholar
  97. Kanda, R., 1959, Studies of the regulation centre on promotion of antibody II. On the migration and relation of normal precipitin antibody and leucocyte in the peripheral blood by electric stimuli in the hypothalamus of rabbit, Jpn.J.Bacteriol. 14: 542.Google Scholar
  98. Kater, L., Oosterom, R., McClure, J., and Goldstein, A.L., 1980, Presence of thymosin-like factors in human thymic epithelial conditioned medium, Int.J.Immunopharmacol. 1: 273.Google Scholar
  99. Kasahara, K., Tanaka, S., Ito, T., and Hamashima, Y., 1977, Suppression of the primary immune response by chemical sympathectomy, Res.Commun. Chem.Pathol.Pharmacol. 16:687.Google Scholar
  100. Kennos, B., Dumont, I., Brohee, D., Hubert, C., and Neve, P., 1983, Effect of Vitamin C supplements on cell-mediated immunity in old people, Gerontology 29: 305.Google Scholar
  101. Kim, Y., and Michael, A.E., 1975, Hypocomplementemia in anorexia nervosa, J.Pediatr. 87: 582.Google Scholar
  102. Kjösen, B., Bassoe, H.H., and Myking, 0., 1975, The glucose oxidation in isolated leukocytes from female patients suffering from overweight or anorexia nervosa, Scand.J.Clin.Lab.Invest. 35: 447.PubMedGoogle Scholar
  103. Kneer, N.M., and Lardy, H.A., 1983, Regulation of gluconeogenesis by nor-epinephrine, vasopressin, and angiotensin II: A2$gmparative study in the absence and presence of extracellular Ca, Arch.Biochem. Biophys. 225:187.Google Scholar
  104. Knepel, W., Benner, K., and Hertling, C., 1982, Role of vasopressin in the ACTH response to isoprenaline, Eur.J.Pharmacol. 81: 645.CrossRefGoogle Scholar
  105. Knudtzon, J., 1983, Acute effects of oxytocin and vasopressin on plasma lev- els of glucogon, insulin and glucose in rabbits, Horm.metabol. Res., 15: 103Google Scholar
  106. Krulich, L., Giachetti, A., Marchlewska-Koj., Hefco, E., and Jameson, H.E. 1977, On the role on the central noradrenergic and dopaminergic systems in the regulation of THS secretion in the rat, Endocrinology, 100: 496.Google Scholar
  107. Koenig, J., Mayfield, M.A., Coppings, R.J., McCann, S.M., and Krulich, L., 1980, Role of central nervous system neurotransmitters in mediating the effects of morphine on growth hormone-and prolactin-secretion in the rat, Brain Res. 197: 453.Google Scholar
  108. Kokka, N. and George, R., 1974, Effects of Narcotic Analgesics, Anesthetic and Hypothalamic Lesions on Growth Hormone and Adrenocorticotrophic Secretion in Rats, in:“Narcotics and the Hypothalamus”, E.Zimmerman and R.George, eds., Raven Press, NewYork.Google Scholar
  109. Koyuncuoglu, H., 1983, The treatment with L-aspartic acid on persons addict- ed to opiates, Bull.Narcotics (United Nation Publication) 35: 11Google Scholar
  110. Koyuncuoglu, H., Berkman, K., Wildmann, J., and Matthaei, H., Antagonistic effect of L-aspartic acid on decrease in body weight, food and fluid intake, and naloxone reversible rectal temperature caused by D-aspartic acid, Pol.J.Pharmacol.Pharm. 34:333.Google Scholar
  111. Koyuncuoglu, H., Berkman, K., and Sabuncu, H., 1984 a, Feeding, drinking, urine osmolality in DI Brattleboro rats: Changes by morphine, naloxone, D-amino acids, prolyl-leucyl-glycinamide (PLC), Pharmacol.Biochem.Behay. 20:29.Google Scholar
  112. Koyuncuoglu, H., Berkman, K., Hatipoglu, I., and Sabuncu, H., 1984 b, Vasopressin release by D-aspartic acid, morphine and prolyl-leucyl-glycinamide (PLG) in DI Brattleboro rats, Pharmacol.Biochem.Behay., 20:519.Google Scholar
  113. Koyuncuoglu, H., Berkman, K., and Matthaei, H., Effects of morphine, D-as- partic acid, d phenylalanine, D-leucine and PLG on L-asparaginase activity in rats, Med.Bull.Ist.Med.Fac. (in press).Google Scholar
  114. Koyuncuoglu, H., Berkman, K., and Sabuncu, H., 1984 c, Feeding, drinking, urine osmolality in DI Brattleboro rats: Changes by morphine, naloxone, D-amino acids, prolyl-leucyl-glycinamide (PLG), Pharmacol.Biochem.Behay. 20:29.Google Scholar
  115. Koyuncuoglu, H., Genç, E., Güngör, M., Eroglu, L., and Sagduyu, H., 1977, The antagonizing effect of aspartic acid on the brain levels of monoamines and free amino acids during the development of tolerance to and physical dependence on morphine, Psychopharmacology 54: 187.Google Scholar
  116. Koyuncuoglu, H., Keyer-Uysal, M., Berkman, K., Güngör, M., and Genç, E., 1979, The relationship between morphine, aspartic acid and L-asparaginase, Eur.J.Pharmacol. 60: 369.Google Scholar
  117. Koyuncuoglu, H., Wildmann, J., Berkman, K., and Matthaei, H., 1982 b, The effects of D- and/or L-aspartic acid on the total weight of body and the weights of certain organs, and their protein, triglyceride and glycogen contents, Drug Res. 32:738.Google Scholar
  118. Kumakura, K., Karoum, F., Guidotti, A., and Costa, E., 1980, Modulation of nicotinic reseptors by opiate receptor agonists in cultured adrenal chromaffin cells, Nature 283: 489.Google Scholar
  119. Kumar, R., Mitchell, E., and Stolerman, I.P., 1971, Disturbed patterns of behavior in morphine tolerant and abstinent rats, Br.J.Pharmacol. 42:473.Google Scholar
  120. Kuschinsky, K., and Hornykiewicz, 0,, 1972, Morphine catalepsy in the rat: Relation to striatal dopamine metabolism, Eur.J.Pharmacol. 19: 119.PubMedCrossRefGoogle Scholar
  121. Lal, H., 1975, Narcotic dependence, narcotic action and dopamine receptors, Life Sci. 17: 483.Google Scholar
  122. Lal, H., and Numan, R., 1976, Blockade of morphine-withdrawal body shakes by haloperidol, Life Sci. 18: 163.Google Scholar
  123. Lapin, V., 1974, Influence of simultaneous pinealectomy and thymectomy on the growth and formation of metastases of the Yoshida sarcoma in rats, Exp.Pathol. 9: 108.Google Scholar
  124. Lapin, V., 1976, Pineal gland and malignancy, Österr.Z.Onkol. 3: 51.Google Scholar
  125. Leger, J., and Masson, G., 1947, Factors influencing an anaphylactoid reaction in the rat, Fed.Proc.Fed.Am.Soc.Exp.Biol. 6: 150.Google Scholar
  126. Lindstrom, J.M., Lennon, V.A., Seybold, M.E., and Whittingham, S., 1976, Experimental autoimmune myasthenia gravis and myasthenia gravis: Biochemical and immunochemical aspects, Ann.N.Y.Acad.Sci. 274: 254.Google Scholar
  127. Lomax, P., and George, R., 1966, Thyroid activity following administration of morphine in rats with hypothalamic lesions, Brain Res. 2: 361.Google Scholar
  128. Lotti, V.J., Kokka, N., and George, R., 1969, Pituitary-adrenal activation following intrahypothalamic microinjection of morphine, Neuroendocrinology 4: 326.Google Scholar
  129. Louria, D.B., Hensle, T., and Rose, J., 1967, The major medical complications of heroin addiction, Ann.Int.Med. 67: 1.CrossRefGoogle Scholar
  130. Ludovici, P.P., and Axelrod, A.E., 1951, Circulating antibodies in vitamin-deficiency states: Pteroylglutamic acid, niacin-tryptophan, vitamin B12 and D deficiencies, Proc.Soc.Exp.Biol.Med. 77: 526.Google Scholar
  131. Luparello, T.J., Stein, M., and Park, C.D., 1964, Effect of hypothalamic lesions on rat anaphylaxis, Am.J.Physiol. 207: 911.Google Scholar
  132. Luri, M.B.,1960, The reticuloendothelial system, cortisone, and thyroid function: Their relation to native resistance to infection, Ann.N. Y.Acad.Sci. 88:83.Google Scholar
  133. Lutz-Bucher, B., Koch, B., Mialhe, C., and Briaud, B., 1980, Involvement of vasopressin in corticotropin-releasing effect of hypothalamic median eminence extract, Neuroendocrinology 30: 178.Google Scholar
  134. Maclean, D., and Reichlin, S., 1980, Neuroendocrinology and the Immune proc- ess, in: “Psychoneuroimmunology” R.Ader and R.A.Good, eds., Academic Press, NewYork.Google Scholar
  135. Maickel, R.P., Braude, M.C., and Zabit, J.E., 1977, The effects of various narcotic agonists and antagonists on deprivation-induced fluid consumption, Neuropharmacology 16:863.Google Scholar
  136. Maravelias, C.P., and Coutselinis, A.S., 1984, Suppressive effects of mor- phine on human blood lymphocytes: an in vitro study, IRCS Med. Sci., 12: 106.Google Scholar
  137. Margules, D.L., 1979, Beta-endorphin and endoloxone. Hormones of the autonomic nervous system for the conservation or expenditure of bodily resources and energy in anticipation of famine or feast, Neurosci. Biobehay.Rev. 3: 155.CrossRefGoogle Scholar
  138. Mark-Kaufman, R., and Kanarek, R.B., 1980, Morphine selectively influences macronutrient intake in the rat, Pharmacol.Biochem.Behay. 12:427.Google Scholar
  139. Maynert, E.W., 1967, Effect of morphine on acetylcholine and certain other neurotransmitters, Arch.Biol.Med.exp.(Santiago) 4:36.Google Scholar
  140. Maynert, E.W., and Klingman, G.I., 1962, Tolerance to morphine. I.Effects on catecholamines in the brain and adrenal glands, J.Pharmacol.Exp. Ther., 135: 285.Google Scholar
  141. McFarlane, H., 1976, Malnutrition and impaired response to infection, Proc. Nutr.Soc. 35:263.Google Scholar
  142. McFarlane, H., and Hamid, J., 1973, Cell-mediated immune response in malnutrition, Clin.Exp.Immunol. 13: 153.Google Scholar
  143. McFarlane, H., Reddy, S., Adcock, K.J., Adeshina, H., Cocke, A.E., and Akene, J., 1970, Immunity, transferrin and survival in kwashiorkor, Brit.Med.J. 4: 268.Google Scholar
  144. McDonough, R.J., Madden, J.J., Falek, A., Shafer, D.A., Pline, M., Gordon, D., Bokos, P., Kuehnle, J.C., and Mendelson, J., 1980, Alteration of T and null lymphocyte frequencies in the peripheral blood of human opiate addicts: In vivo evidence for opiate receptor sites on T lymphocytes, J.Immunol., 125: 2539.PubMedGoogle Scholar
  145. Meisenberg, G., and Simmons, W.H., 1983, Centrally mediated effects of neurohypophyseal hormones, Neurosci.Biobehay.Rev. 7: 263.Google Scholar
  146. Meites, J., Bruni, J.F., VanVugt, D.A., 1979, Relation of endogenous opioid peptides and morphine to neuroendocrine functions, Life Sci. 24: 1325.Google Scholar
  147. Merali, Z., Chosh, P.K., Hrdina, P.D., Singhal, R.L., and Ling, G.M., 1974, Alterations in striatal acetylcholine esterase, and dopamine after methadone replacement in morphine-dependent rats, Eur.J.Pharmacol. 26: 375.Google Scholar
  148. Mihich, E., 1962, Host defense mechanisms in the regression of sarcoma 180 in pyridoxine deficient mice, Cancer Res. 22: 218.Google Scholar
  149. Mihich, E., and Nichol, C.A., 1965, Differences in the selective antitumor effects of 4-deoxypyridoxine and dietary pyridoxine deficiency, Cancer Res. 25: 153.Google Scholar
  150. Monjan, A.A., and Collector, M.I., 1977, Stress-induced modulation of the immune response, Science 196: 307.Google Scholar
  151. Morgan, D.R., DuPont, H.L., Wood, L.V., and Kohl, S., 1984, Cytotoxicity of leucocytes from normal and Shigella-susceptible (opium-treated) Guinea pigs against Shigella sonnei, Infect.Immun. 46: 22.Google Scholar
  152. Morley, J.E., 1981, The endocrinology of the opiates and opioid peptides, Metabolism 30: 195.Google Scholar
  153. Morley, J.E., Yamada, T., and Shulkes, A., 1979, Effects of morphine addiction and withdrawal on thyrotropin releasing hormone (TRH), somatostatin (SLI) and vasoactive intestinal peptide (VIP), Clin.Res. 27:75A.Google Scholar
  154. Murray, M.J., and Murray, A.B., 1979, Anorexia of infection as a mechanism of host defense, Am.J.Clin.Nutr. 32: 593.Google Scholar
  155. Needham, W.P., Shuster, L., Kanel, C.C., and Thompson, M.L., 1981, Liver damage from narcotics in mice, Toxicol.Appl.Pharmacol. 58: 157.CrossRefGoogle Scholar
  156. Nilzen, A., 1955, The influence of the thyroid gland on hypersensitivity reactions in animals, Acta Allergol. 7: 231.Google Scholar
  157. Noteboom, W.D., and Müller, G.C., 1966 a, Effect of levallorphan on RNA and protein in Hela cells, Fed.Proc. 25:646.Google Scholar
  158. Noteboom, W.D., and Müller, G.C., 1966 b, Inhibition of protein and RNA synthesis in Hela cells by levallorphan and levorphanol, Molec.Pharmacol. 2:534.Google Scholar
  159. Okajima, T., Motomatsu, T., Kato, K., and Ibayashi, H., 1980, Naloxone inhibits prolactin and growth hormone release induced by intracellular glucopenia in the rats, Life Sci. 27: 755.Google Scholar
  160. Okouchi, E., 1976, Thymus, peripheral tissue and immunological responsiveness of the pituitary dwarf mice, J.Physiol.Soc.Jpn. 38: 325.Google Scholar
  161. Oosterom, R., and Kater, L., 1980, Target cell subpopulations for human thymus, Clin.Immunol.Immunopathol. 17: 183.CrossRefGoogle Scholar
  162. Oosterom, R., Kater, L., and Oosterom, J., 1979, Effects of human thymic epithelial conditioned medium on mitogen responsiveness of human and mouse lymphocytes, Clin.Immunol.Immunopathol. 12: 460.Google Scholar
  163. Özek, M., Törecl, K., Akkök, I., and Güvener, Z., 1971, Die Wirkung der Neuroleptica-Behandlung auf die Antikörperbildung, Psychopharmacologia (Berl.) 21: 401.CrossRefGoogle Scholar
  164. Palmblad, J., Fohlin, L., and Lundström, M., 1977, Anorexia nervosa and polymorphonuclear (PMN) granulocyte reactions, Scand.J.Haematol. 19: 334.CrossRefGoogle Scholar
  165. PerezCruet, J., Chiara, G.D., and Gessa, G.L., 1972, Accelerated synthesis of dopamine in the rat brain after methadone, Experientia 28: 926.Google Scholar
  166. Puri, S.K., and Lal,H., 1973, Effect of dopaminergic stimulation or blockade on morphine-withdrawal aggression, Psychopharmacologia 32: 113.PubMedGoogle Scholar
  167. Puri, S.K., Spaulding, T.C., and Mantione, C.R., 1978, Dopamine antagonist binding: A significant decrease with morphine dependence in the rat striatum, Life Sci. 23: 637.Google Scholar
  168. Radominska-Pyrek, A., Kraus-Friedmann, N., Lester, R., Little, J., and Denkins, Y., 1982, Rapid stimulation of Na,K -ATPase by glucagon, epinephrine, vasopressin and cAMP in perfused rat liver, FEBS Letters 141: 56.Google Scholar
  169. Rodin, A.E., 1963, The growth and spread of Walker 256 carcinoma in pinealectomized rats, Cancer Res. 23: 1545.Google Scholar
  170. Rofe, A.M., and Williamson, D.H., 1983, Metabolic effects of vasopressin infusion in the starved rat: Reversal of ketonaemia, Biochem.J. 212: 231Google Scholar
  171. Roy, C., 1979, Vasopressin-sensitive adenylate cyclase: Reversibility of hormonal activation, Biochim.Biophys.Acta 587: 433.CrossRefGoogle Scholar
  172. Rusch, H.P., 1944, Extrinsic factors that influence carcinogenesis, Physiol. Rev., 24: 177.Google Scholar
  173. Santisteban, G.A., and Dougherty, T.F., 1954, Comparison of the influences of adrenocortical hormones on the growth and involution of lymphatic organs, Endocrinology 54: 130.Google Scholar
  174. Sarne, Y., Gilt-Ad, I., and Laron, Z., 1981, Regulation of hypophysial secretion by endogenous opiates: Humoral endorphin stimulates the release of growth hormone, Life Sci., 28: 681.Google Scholar
  175. Sawyer, C.H., Critchlow, B.V., and Barrclough, C.A., 1955, Mechanism of blockage of pituitary activation in the rat by morphine, atropine and barbiturates, Endocrinology 57: 345.Google Scholar
  176. Scrimshaw, N.S., Taylor, C.E., and Gordon, J.E., 1968, “Interactions of nutrition and infection”, World Health Organization, Geneva.Google Scholar
  177. Sequeira, W., Jones, E., Siegel, M.E., Lorenz, M., and Kallick, C., 1982, Pyogenic infections of the pubis symphysis, Ann.Int.Med. 96: 604.CrossRefGoogle Scholar
  178. Sing, U., 1979, Effect of catecholamines on lymphopoiesis in fetal mouse thymic explants, J.Anat. 129: 279.Google Scholar
  179. Shavit, Y., Lewis, J.W., Terman, G.W., Gale, R.P., and Liebeskind, J.C., 1984, Opioid peptides mediate with suppressive effects of stress on natural killer cell cytotoxicity, Science 223: 188.Google Scholar
  180. Sloan, J.W., Brooks, J.W., Eisenman, A.J., and Martin, W.R., 1963, The effect of addiction to and abstinence from morphine on rat tissue catecholamine and serotonin levels, Psychopharmacologia(Berl.) 4: 261.Google Scholar
  181. Small, C.B., Klein, R.S., Friendland, G.H., Moll, B., Emerson, E.E., and Spigland, I., 1983, Community-acquired opportunistic infectious and defective cellular immunity in heterosexual drug abusers and hemosexual men, Am.J.Med. 74: 433.Google Scholar
  182. Smith, A.A., Hui, F.W., and Crofford, M.J., 1977, Inhibition of growth in young mice treated with d,l-methadone, Eur.J.Pharmacol. 43: 307.Google Scholar
  183. Smith, D.J., and Joffe, J.M., 1975, Increased neonatal mortality of offspring of male rats treated with methadone or morphine before mating, Nature 253:202.Google Scholar
  184. Smythe, P.M., Shonland, M., Brereton-Stiles, G.G., Coovadia, H.M., Grace, H.J., Loening, W.E.K., Mafoyame, A., and Pavent, M.A., 1971, Thymolymphatic deficiency and depression of cell-mediated immunity in protein-calorie malnutrition, Lancet II: 939.Google Scholar
  185. Spackman, D.H., and Riley, V., 1974, Increased corticosterone, a factor in LDH-virus induced alterations of immunological responses in mice, Proc.Am.Assoc.Cancer Res. 15: 143.Google Scholar
  186. Spackman, D.H., Riley, V., Santisbetan, G.A., Kirk, W., and Bredburg, L., 1974, The role of stress in producing elevated corticosterone levels and thymus involution in mice, Abstr.Int.Cancer.Congr., 11th 3: 382.Google Scholar
  187. Spector, N.H., Cannon, L.T., Diggs, C.L., Morrison, J.E., and Koob, G.F., 1975, Hypothalamic lesions: Effects on immunological responses, Physiologist 18: 401.Google Scholar
  188. Solomon, G.F., and Amkraut, A.A., 1979, Neuroendocrine aspects of the immune response and their implications for stress effects on tumor immunity, Cancer Detect.Prev. 2: 197.Google Scholar
  189. Stein, M., Schiavi, R.C., and Camerino, M.S., 1976, Influencer of brain and behavior on the immune system, Science 191: 435.Google Scholar
  190. Stein, M., Schiavi, R.C., and Luparello, T.J., 1969, The hypothalamus and immune process, Ann.N.Y.Acad.Sci. 164: 465.Google Scholar
  191. Suskind, R., 1977, in: “Malnutrition and the Immune Response”, RavenPress, NewYork.Google Scholar
  192. Tache, Y., Lis, M., and Collu, R., 1977, Effects of thyrotropin-releasing on behavioral and hormonal changes induced by /3-endorphin, Life Sci. 21:841.Google Scholar
  193. Tannenbaum, A., and Silverstone, H., 1953, Nutrition in relation to cancer, Adv.Cancer Res. 1: 451.CrossRefGoogle Scholar
  194. Tarr, K.H., 1980, Candida endophthalmitis and drug abuse, Aust.J.Ophthalmol. 8: 303.Google Scholar
  195. Terragna, A., and Jannuzzi, C., 1963, Ormoni steroidei e anticorpopoiesi. Nota II. Valutazione comparativa di vari ormoni anabolizzanti, G.Mal.Inf., 15: 360.Google Scholar
  196. Tolentino, P., Terragna, A., and Jannuzzi, C., 1961, Ormoni stereoidei e anticorpopoiesi. Nota I. Blocco enzimatico della 1. Idrossilasi surrenalica. Effetto della somministrazione di androgeni, G.Mal. Inf., 13: 561.Google Scholar
  197. Tsypin, Â.B., and Maltzev, V.N., 1967, The effects of irritation of the hypothalamus on the concentration of normal antibodies in blood, Patol.Fiziol., 11: 83.Google Scholar
  198. Turner, C.D., and Hagnara, J.T., 1971, in: “General Endocrinology” 5th ed., Saunders, Philadelphia.Google Scholar
  199. Visscher, B., Ball, Z., Barnes, R.H., and Silvertsen, I., 1942, The influence of caloric restriction upon the incidence of spontaneous mammary carcinoma in mice, Surgery 11: 48.Google Scholar
  200. Vogt, M., 1954, The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs, J.Physiol.(Lond.) 123: 451.Google Scholar
  201. Wakabayashi, M., 1966, On the effect of hormones on antibody production, J. Jap.Obstet.Gynaec.Soc. 13: 209.Google Scholar
  202. Weiner, N., 1979, Multiple factors regulating the release of norepinephrine consequent to nerve stimulation, Fed.Proc. 38: 2193.Google Scholar
  203. Westphal, U., 1971, in: “Steroid-Protein Interactions”, Springer-Verlag, NewYork.CrossRefGoogle Scholar
  204. White, A., Handler, P., and Smith, E.L., 1968, in: “Principles of Biochemistry” 4th ed. McGraw-Hill, NewYork.Google Scholar
  205. Williams, E.G., and Oberst, F.W., 1946, A cycle of morphine addictions, I: Biological investigations, Public Health Reports 61: 1.PubMedCrossRefGoogle Scholar
  206. Wood, C.L., Babcock, C.J., and Blum, J.J., 1981, Effects of vasopressin on fructose and glycogen metabolism in hepatocytes from fed and fasted rats, Arch.Biochem.Biophys. 212: 43.Google Scholar
  207. Wybran, J., Appleboom, T., Famaey, J.P., and Govaerts, A., 1979, Suggestive evidence for receptors for morphine and methionine-enkephalin on normal blood T lymphocytes, J.Immunol. 123: 1068.Google Scholar
  208. Zagon, I.S., and McLaughlin, P.J., 1977, Morphine and brain growth retardation in the rat, Pharmacology 15: 276.Google Scholar
  209. Zagon, I.S., and McLaughlin, P.C., 1977 b, Effects of chronic morphine administration on pregnant rats and their offspring, Pharmacology 15: 302.Google Scholar
  210. Zagon, I.S., and McLaughlin, 1983, Increased brain size and cellular content in infant rats treated with an opiate antagonist, Science 221: 1179.Google Scholar
  211. Zimmerman, E., and Pang, C.N., 1976, Acute Effects of Opiate Administration on Pituitary Genadotrophin and Prolactin Release, in: “Tissue Response to Addictive Drugs”, D.M.Ford and D.H.Clouvet, eds., Spectrum Publications, NewYork.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Hikmet Koyuncuoğlu
    • 1
  • Mehmet Güngör
    • 1
  1. 1.Department of Pharmacology and Clinical PharmacologyIstanbul Medical FacultyÇapa, IstanbulTurkey

Personalised recommendations