Significant Role of Receptor Coupling in the Neuropeptide-Induced Alterations of Macrophage Cytotoxicity

  • Gabriella Foris
  • George A. Medgyesi
  • Jozsef I. Szekely


Although in 1975 (Hughes et al., 1975) the year of discovery of the endogenous opiates, great expectations accompanied the research of these peptides, our knowledge regarding the central and peripheric effects of these compounds remain incomplete and superficial. Presumably the unexpected difficulties are due partly to the fact that the “secret” of the complex function of the opiate receptors has not been revealed, and on the other hand, some smaller peptide hormones derived from the large precursor molecules and displaying various biological effects could always confuse the interpretation of the essential processes.


Adenylate Cyclase Opioid Peptide Intracellular cAMP Level Adenylate Cyclase System Chemotactic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babior, B.M., 1984, The respiratory burst of phagocytes, J. Clin. Invest., 73: 599.PubMedCrossRefGoogle Scholar
  2. Bajusz, S., Ronai, A.Z., Szekely, J.I., Graf, L., Dunai-Kovacs, Z., and Berzetgi, I.S 1977, A superactive antinociceptive pentapeptide, (D-Met, Pro) enkephalinamide, Febs Letters, 76: 91.PubMedCrossRefGoogle Scholar
  3. Baker, S.S.,and Cohen, H.J., 1983, Altered metabolism in selenium deficient rat granulocytes, J. Immunol., 130: 2856.Google Scholar
  4. Berridge, MJ., 1984, Inositol triphosphate and diaclyglycerol as second messengers, Biochem. J., 220: 345.PubMedGoogle Scholar
  5. Bhathena, S.J., Loule, J., Scheitter, G.P., Redman, R.S., Wahl, I., and Recant, L., 1981, Identification of human mononuclear leukocytes bearing receptors for somatostatin, and glucagon, Diabetes, 30: 127.PubMedCrossRefGoogle Scholar
  6. Blalock, J.E., and Smith, E.M., 1981, Human leukocyte interferon: potent endorphin-like opioid activity, Bioch. Biophys. Res. Commun., 101: 472.CrossRefGoogle Scholar
  7. Casale, T.B. Bowman, S., and Kaliner, M., 1984, Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and non opiate receptor participation, J. Allergy Clin. Immunol., 73: 775.Google Scholar
  8. Coleman, D.L., Culver, K.E., and Ryan, J.L., 1984, Enhancement of macrophage immune and non immune receptor mediated phagocytosis by a low molecular weight soluble factor from resident thymocytes, J. Immunol., 133: 3121.PubMedGoogle Scholar
  9. Damerau, B., Grönefeld, E., and Vogt, W., 1978, Chemotactic effect of complement-derived peptides C3ai, C5a (classical anaphylatoxin) in rabbit and guinea pig polymorphonuclear leukocytes, NaunynSchemeideberg’s Pharm., 305: 181.CrossRefGoogle Scholar
  10. David, J.R., and Remold, H.G., 1976, Macrophage activation by lymphocyte mediators and studies on the interaction of macrophage inhibitory factor (MIF) with its target cells, In: “Immunobiology of the Macrophage,” D.S. Nelson, ed., Academic Press, New York, San Francisco.Google Scholar
  11. Derso, B., and Foris, G., 1981, Effect of angiotensin II on the Fc receptor activity of rat macrophages, Immunology, 42: 277.Google Scholar
  12. Dri, P., Berton, G., and Patriarca, P., 1981, A twofold effect of L-tosylamide-2-phenylethyl chloromethyl ketone on the oxidative metabolism of guinea pig phagocytes, Inflammation, 5: 223.PubMedCrossRefGoogle Scholar
  13. Epps, D.E., and Saland, L., 1984, 8 endorphin and Met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis, J. Immunol., 132: 3046.Google Scholar
  14. Faith, R.E., Liang, H.J., Murgo, A.J., and Plotnikoff, N.P., 1984, Neuroimmunomodulation with enkephalins: enhancement of human natural killer (NK) cell activity in vitro, Clih. Immunol. Immunopathol., 31: 412.CrossRefGoogle Scholar
  15. Faith, R.E., Plotnikoff, N.P., and Murgo, A.J., 1985, Effects of opiates and enkephalins-endorphins on immune functions, In: “NIDA Technical Meeting on Mechanisms of Tolerance and Dependence”(In Press).Google Scholar
  16. Fischer, E.G., and Falke, N.E., 1985, 8 endorphin modulates immune functions In:”Psychotherapy and Psychosomatics, II,” World Congress of the International College of Psychosomatic Medicine, ( In Press).Google Scholar
  17. Foris, G., Derso, B., Medgyesi, G.A., and Bazin, H., 1981, Role of cytoskeleton in the Fc receptor activity of rat peritoneal macrophages, Int. Archs. Allergy appl. Immun., 65: 138.CrossRefGoogle Scholar
  18. Foris, G., Derso, B., Medgyesi, G.A., and Füst, G., 1982a, Effect of angiotensin II on macrophage functions, Immunology, 48: 529.Google Scholar
  19. Foris, G., Füst, G., and Medgyesi, G.A., 1983b, The effect of oligopeptides on the C3b receptor-mediated functions of rat macrophages, Immunol. Letters, 6: 7CrossRefGoogle Scholar
  20. Foris, G., Hauck, M., Derso, B., Medgyesi, G.A., and Füst, G., 1983c, Effect of low-molecular weight lymphokine components on the Fe and C3b receptor mediated macrophage functions, Cell. Immunol., 78: 276.PubMedCrossRefGoogle Scholar
  21. Foris, G., Medgyesi, G.A., and Fust, G., 1984a, Regulating role of natural peptides in the Fc and C3b receptor mediated functions of resident and provoked macrophages, In: “Tissue Culture and RES,” P. Rohlich and E. Baczy, eds., Publishing House of the Hung. Acad. Sci.Google Scholar
  22. Foris, G., Medgyesi, G.A., Gyimesi, E., and Hauck, M., 1984b, Met-enkephalin induced alterations of macrophage functions, Mol. Immunol., 21: 747.PubMedCrossRefGoogle Scholar
  23. Foris, G., Gyimesi, E., and Komaromi, I., 1985, The mechanism of antibody dependent cellular cytotoxicity stimulation by somatostatin in rat peritoneal macrophages, Cell. Immunol., 90: 217.PubMedCrossRefGoogle Scholar
  24. Fülöp, T., Foris, G., and Leövey, A., 1984, Age related changes in cAMP and cGMP levels during phagocytosis in human polymorphonuclear leukocytes, Mech. Ageing Develop., 27: 233.CrossRefGoogle Scholar
  25. Gennaro, R. Pozzan, T., and Romeo, D., 1984, Monitoring of cytosolic free Cat+ in C5a-stimulated neutrophils: Loss of receptor modulated Ca2+ uptake in granule-free cytoplasts, Proc. Natl. Acad. Sci. USA, 81: 1416.Google Scholar
  26. Gilbert, J.A., and Richelson, E., 1983, Function of delta opioid receptors in cultured cells, Mol. Cell. Biochem., 55: 83.PubMedCrossRefGoogle Scholar
  27. Gilman, S.C., Schwartz, J.M., Milner, R.J., Bloom, F.E., and Feldman, J.D., 1982, endorphin enhanced lymphocyte proliferative responses, Proc. Natl. Acad. Sci. USA, 79: 4226.Google Scholar
  28. Gilman, A.G., 1984, Guanine nucleotide binding regulatory proteins and dual control of adenylate cyclase, J. Clin. Invest., 73: 1.PubMedCrossRefGoogle Scholar
  29. Goetzl, E.J., Klickstein, L.B., Watt, K.W.K., and Wintroub, B.U., 1980, The preferential human mononuclear chemotactic activity of the substituent tetrapeptides of angiotensin II. Bioch. Biophys. Res. Commun., 97: 1097.CrossRefGoogle Scholar
  30. Hartwig, J.H., Yin, L., and Stossel, T.P., 1980, Contractile proteins and mechanism of phagocytosis in macrophages, In: “Mononuclear Phagocytes,” R. van Furth, ed., Martinus Nijhoff, The Hague, Boston, London.Google Scholar
  31. Herman, Z.S., Stachure, Z., Opielka, L., Siemion, I.Z., and Nawrocka, E., 1981, Tuftsin and D-Arg3-tuftsin possess analgesic action, Experientia, 37: 76.PubMedCrossRefGoogle Scholar
  32. Hersch, L.B., 1982, Degradation of enkephalins: the search for an enkephalinase, Mol. Cell. Biochem., 47: 35.Google Scholar
  33. Holian, A., and Daniele, R.P., 1979, Stimulation of oxygen consumption and superoxide anion production in pulmonary macrophages by N-formyl methionyl peptides, Febs Letters, 108: 47.PubMedCrossRefGoogle Scholar
  34. Holian, A., and Daniele, R.P., 1982, Formyl peptide stimulation of superoxide anion release from lung macrophages: sodium and potassium involvement, J. Cell. Physiol., 113: 413.PubMedCrossRefGoogle Scholar
  35. Holmes, B., Prk, D.H., Malavista, S.E., Qui, P.G., Nelson, D.L., and Good, R.A., 1970, Chronic granulomatous disease in females. A deficiency of glutathione peroxidase, N, Engl. J. Med., 283: 217.CrossRefGoogle Scholar
  36. Honda, M., and Hayashi, H., 1982, Characterization of three macrophage chemotactic factors from PPD-induced delayed hypersensitivity reaction sites in guinea pigs, with special reference to a chemotactic lymphokine, Am. J. Pathol., 108: 171.PubMedGoogle Scholar
  37. Horky, K., Schreiber, V., and Pribyl, T., 1984, Radioactive 86Rubidium influx into red blood cells in essential hypertension in relation to the plasma renin activity, Horm. Metab. Res., 16: 41.PubMedCrossRefGoogle Scholar
  38. Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A., and Morris, H.R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature, 258: 577.PubMedCrossRefGoogle Scholar
  39. Hugli, T.E., Gerard, C., Kawahara, M., Scheetz, M.E., Barton, R., Briggs, S., Koppel, G., and Russel, S., 1981, Isolation of three separate anaphylatoxins from complement activated human serum, Moll. Cell. Biochem., 41: 59.CrossRefGoogle Scholar
  40. Hung, C.Y., Lefkowitz, S.S., and Geber, W.F., 1973, Interferon inhibition by narcotic analgestics, Proc. Soc. Exp. Biol. Med., 142: 106.PubMedGoogle Scholar
  41. Jesaits, A.J., Naemura, J.R., Sklar, L.A., Cohrane, C.G., and Painter, R.G., 1984, Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: formation of high-affinity ligand-receptor complexes in transient association with cytoskeleton, J. Cell. Biol., 98: 1378.CrossRefGoogle Scholar
  42. Keller, H.U., Gerber, H., Hess, M.W., and Cottier, H., 1976, Studies on the regulation of neuthrophil chemotactic response using a rapid and releable method for measuring random migration and chemotaxis of neutorphil granulocytes, Agents and Actions, 6: 326.PubMedCrossRefGoogle Scholar
  43. Keller, H.U., Wissler, J.H., and Damarau, B., 1981, Diverging effects of chemotactic serum peptides and synthetic f-Met-Leu-Phe on neutrophil locomotion and adhesion, Immunology, 42: 379.PubMedGoogle Scholar
  44. Kitagawa, S., Takaku, F., and Sakamoto, S., 1979, Possible involvement of proteases in superoxide production by human polymorphonuclear leukocytes, Febs Letters, 99: 275.PubMedCrossRefGoogle Scholar
  45. Kolb, G., Kôppler, H., Gramse, M., and Haveman, I., 1982, Cleavage of IgG by elastase-like protease (ELP) of human polymorphonuclear leukocytes (PMNL): isolation and characterization of Fab and Fc fragments and low molecular weight peptides stimulation of granulocyte function by ELP-derived Fab and Fc fragments, Immunobiol., 161: 507.CrossRefGoogle Scholar
  46. Korchak, H.M., and Weissmann, G., 1980, Stimulus response coupling in the human neutrphil. Transmembrane potential and the role of extra-cellular Na, Biochem. Biophys. Acta, 601: 180.PubMedCrossRefGoogle Scholar
  47. Krueger, J.M., Walter, J., Karnovsky, M.L., Chediak, L., Choay, J.P., Lefrancier, P., and Lederer, E., 1984, Muramyl peptides. Vatiation of somnogenic activity with structur, J. Exp. Med., 159: 68.PubMedCrossRefGoogle Scholar
  48. Lewis, J.W. Shavit, Y., Terman, G.W., and Gale, R.P., 1984, Stress and morphine affect survival of rats challenged with a mamary ascites tumor (MAT 31762B), Nat. Immun. Cell. Growth Regul., 3: 43.Google Scholar
  49. Lopkor, A., Abood, L.G., Hass, W., and Lionetti, F.J., 1980, Stereo-selective muscarinic acethylcholine and opiate receptors on human phagocytic leukocytes, Biochem.Pharmacol., 29: 1361CrossRefGoogle Scholar
  50. Lowrie, D.B., Jackett, P.S., Aber, V.K., and Carol, M.E.W., 1980, Cyclic nucleotides and phagosome-lysosome fusion in mouse peritoneal macrophages, In: “Mononuclear Phagocytes,” R. van Furth, ed., Martinus Nijhoff, The Hague, Boston, London.Google Scholar
  51. Lynn, W.S., and Mohaptra, N., 1980, Control of leukocyte functions. Role of internal H concentration and a membrane-bound esterase, Inflammation, 4: 329.PubMedCrossRefGoogle Scholar
  52. Mathews, P.M., Froelich, C.J., Sibbit, W.L., and Bankhurst, A.D., 1983, Enhancement of natural cytotoxicity by ß endorphin, J. Immunol., 130: 1658.PubMedGoogle Scholar
  53. McPah, L.C., and Snyderman, R., 1983, Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli, J. Clin. Invest., 72: 192.CrossRefGoogle Scholar
  54. Medgyesi, G.A., Foris, G., Derso, B., Gergely, J., and Bazin, H., 1980, Fc receptors of rat peritoneal macrophages: immunoglobulin class specificity and sensitivity to drugs affecting the microfilament and microtubule system, Immunology, 40: 317.PubMedGoogle Scholar
  55. Medgyesi, G.A., Miklos, K., Kulich, J., Fust, G., Gergely, J., and Bazin, H., 1981, Classes and subclasses of rat antibodies: reaction with the antigen and interaction of the complex with the complement system, Immunology, 43: 171.PubMedGoogle Scholar
  56. Medgyesi, G.A., Foris, G., Fust, G., and Bazin, H., 1984, Regulation of Fc receptor mediated functions of resident and provoked peritoneal macrophages, Immunobiol., 167: 293.CrossRefGoogle Scholar
  57. Merishi, J.N., and Mills, I.H., 1983, Opiate receptors on lymphocytes and platelets in man, Clin. Immunol. Immunopathol., 27: 240.CrossRefGoogle Scholar
  58. Miller, G.C., Murgo, A.J., and Plotnikoff, N.P., 1983, Enkephalins — enhancement of active T-cell rosettes from lymphoma patients, Clin. Immunol. Immunophathol., 26: 446.CrossRefGoogle Scholar
  59. Miller, G.C., Murgo, A.J., and Plotnikoff, N.P., 1984, Enkephalins — enhancement of active T-cell rosettes from normal volunteers, Clin. Immunol. Immunopathol. 31: 132.PubMedCrossRefGoogle Scholar
  60. Moore, T.C., 1984, Modification of lymphocyte traffic by vasoactive neurotransmitter substances, Immunology, 52: 511.PubMedGoogle Scholar
  61. Najjar, V.A., and Nishioka, K., 1970, A natural phagocytosis stimulating peptide, Nature, 228: 672.PubMedCrossRefGoogle Scholar
  62. Oliver, J.M., 1978, Cell biology of leukocyte abnormalities-membrane and cytoskeletal function in normal and defective cells, Am. J. Pathol., 93: 221.PubMedGoogle Scholar
  63. Oliver, J.M., and Zurier, R.B., 1976, Correction of characteristic abnormalities of microtubule function and granule morphology in ChediakHigashi syndrome with cholinerg agonist, J. Clin. Invest., 57: 1239.PubMedCrossRefGoogle Scholar
  64. Onazaki, K., Takenawa, T., Homma, Y., and HashiToto, T., 1983, The mechanism of macrophage activation induced by Cat ionophore, Cell Immunol., 72: 242.CrossRefGoogle Scholar
  65. Ogmundsdottir, H.M., and Weir, D.M., 1980, Mechanism of macrophage activation, Clin. Exp. Immunol., 40: 223.PubMedGoogle Scholar
  66. Pant, H.C., Gallant, P.E., Gould, R., and Gainer, H., 1982, Distribution of calcium-activated protease activity and endogenous substrates in the squid nervous system, J. Neurosci., 2: 1587.Google Scholar
  67. Payan, D.G., Hes, C.A., and Goetzl, E.J., 1984, Inhibition by somatostain of the proliferation of T-lymphocytes and Molt-r lymphoblasts, Cell. Immunol., 84: 433.PubMedCrossRefGoogle Scholar
  68. Plotnikoff, N.P., and Miller, G.C., 1983, Enkephalins as immunomodulators, Int. J. Immunopharmac., 5: 437.CrossRefGoogle Scholar
  69. Plotnikoff, N.P., Murgo, A.J., and Faith, R.E., 1984, Neuroimmunomoduation with enkephalins: effects on thymus and spleen weights in mice, Clin. Immunol. Immunopathol., 32: 52.PubMedCrossRefGoogle Scholar
  70. Sheagran, J.N., and Tuazon, C.U., 1977, Immunological aspects, In: “Drug Abuse. Clinical and Basic Aspects,” S.N. Pradhan and S.N. Dutta, eds., C.V. Mosby Co., St. Louis.Google Scholar
  71. Smith, R.J., Bowman, B.J., and Iden, S.S., 1981, Effects of trifluoperazine on human neutrophil function, Immunology, 44: 677.PubMedGoogle Scholar
  72. Spada, A., Vallar, L., and Giannatasio, G., 1984, Presence of an adenylate cyclase dually regulated by somatostain and human pancreatic growth hormone GH-releasing factor in GH-secreting cells, Endocrinology, 115: 1203.PubMedCrossRefGoogle Scholar
  73. Stabinsky, Y., Bar-Shavit, Z., Fridkin, M., and Goldman, R., 1980, On the mechanism of action of the phagocytosis-stimulating peptide, tuft-sin, Mol. Cell. Biochem., 30: 71.PubMedGoogle Scholar
  74. Stolz, V., 1981, Stimulatory effect of latex and zymosan particles on cAMP content in human granulocytes, Mol. Immunol., 18: 773.CrossRefGoogle Scholar
  75. Tanabe, A., Kobayashi, Y., and Usui, T., 1983, Enhancement of human neutrophil oxygen consumption by chemotactic factors, Experientia, 39: 604.PubMedCrossRefGoogle Scholar
  76. Thomas, D.W., and Hoffman, M.D., 1984, Identification of macrophage receptors for angiotensin: a potential role in antigen uptake for T-lymphocyte responses, J. Immunol., 132: 2807.PubMedGoogle Scholar
  77. Vogel, S.N., Weedon, L.L., Oppenheim, J.J., and Rosenstreich, D.Z., 1981, Defecive Fc-mediated phagocytosis in C3HeJ macrophages II. Correction by cAMP agonists, J. Immunol., 126: 441.PubMedGoogle Scholar
  78. Wahl, S.M., Wahl, L.M., McCarthy, J.B., Chedid, L., and Mergehagen, S.E., 1979, Macrophage activation by mycobacterial water soluble compounds and synthetic muramyl dipeptides, J. Immunol., 122: 2226.PubMedGoogle Scholar
  79. Weber, R.J., and Pert, C.B., 1984, Opiaterg modulation of the immune system, In: “Central and peripheral endorphins: basic and clinical aspects,” E.E. Müller and A.R. Genezzani, eds., Raven Press, New York.Google Scholar
  80. Weinstock, J.V., and Kassab, J. T., 1984, Angiotensin II stimulation of granuloma macrophage phagocytosis and actin polymerization in murine Schistosomiasis mansoni, Cell Immunol., 89: 46.PubMedCrossRefGoogle Scholar
  81. Wilkinson, P.C., 1979, Synthetic peptide chemotactic factors for neutrophils: the range of active peptides, their efficacy, inhibitory and susceptibility of the cellular response to enzymes and bacterial toxins, Immunology, 36: 579.PubMedGoogle Scholar
  82. Woodcock, E.A., and Johnston, C.I., 1982, Inhibition of adenylate cyclase by angiotensin II in rat renal cortex, Endocrinology, 111: 1687.PubMedCrossRefGoogle Scholar
  83. Yamamura, M., Baler, J., and Valdimarsson, H., 1976, At chromium release assay for phagocytic killing of Candida albicans, J. Immunol. Meths., 13: 227.CrossRefGoogle Scholar
  84. Zagon, I.S., and Mc Laughlin, P.J., 1981, Heroin prolongs survival time and retards tumor growth in mice with neuroblastoma, Brain Res. Bull., 7: 25PubMedCrossRefGoogle Scholar
  85. Zechner, R., Dieplinger, H., Roscher, A., and Kostner, G.M., 1984, The low density lipoprote in pathway of native and chemically modified low density lipoprotein isolated from plasma incubated in vitro, Biochem. J., 224: 569.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Gabriella Foris
    • 1
  • George A. Medgyesi
    • 2
  • Jozsef I. Szekely
    • 3
  1. 1.First Department of MedicineUniversity Medical SchoolDebrecenHungary
  2. 2.Institute of Heaematology and Blood TransfusionBudapestHungary
  3. 3.Institute for Drug ResearchBudapestHungary

Personalised recommendations