Skip to main content

Relationship between Lymphokine and Opiatergic Modulation of Lymphocyte Proliferation

  • Chapter
Enkephalins and Endorphins

Abstract

T lymphocytes are primary effector cells of cell-mediated immunity as well as regulators of growth (clonal expansion) and differentiation of the immune system. Until less than a decade ago, their regulatory activity was presumed to be attributed to predominantly cellular interactions mediated by membrane-bound recognitive elements often associated with the major histocompatibility (H2 or HLA) complex. Recently, in the historical context of the development of immunological models, many regulatory functions of T lymphocytes appear to be mediated by molecules secreted by various functionally distinct subpopulations of lymphoid and nonlymphoid cells. Indeed, the principle regulatory cells of the immune system, T lymphocytes, are also under the regulatory influence of specific monocyte/ macrophage derived cytokines referred to as monokines. In addition to regulating lymphocyte activities, there is considerable evidence that lymphocyte-derived molecules, lymphokines, influence the differentiation of hematopoietic cells, mast cells, fibroblasts, and osteoclasts1–6. This suggests that the regulatory cytokines produced by specific antigen may also effect hematopoietic homeostasis as well as inflammatory cells involved in immediate hypersensitivities. Lymphokines are considered to be actively synthesized (transcription of DNA) and secreted by either native lymphoid cells or their malignant cell line counterparts (macrophage or lymphocyte). While normal lymphoid tissues or cells must be activated by antigen or polyclonal stimulation to produce lymphokines, some longterm cell lines have been fortuitously shown to constitutively secrete lymphokines. Indeed, such cell lines have been critical for providing the genetic library for the recombinant DNA cloning of several lymphokines. Lymphokines provide nonspecific augmentation to antigen-specific responses. Lymphokines can generally be readily separated by conventional biochemical chromatography, but standard 280 nm absorbance and protein stains have been of little value since they are usually present in culture media in nanomolar concentrations. Finally, with the introduction of monoclonal antibodies, several lymphokines may be neutralized and quantitated in vitro by specific antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Ruscetti, R. H. Cypess, and P. S. Chervenick, Blood 47: 757 (1976).

    CAS  Google Scholar 

  2. J. J. Oppenheim and I. Gery, Immunology Today 3: 113 (1982).

    Article  Google Scholar 

  3. K. Tadokoro, B. M. Stadler and A. L. DeWeck, J. Exp. Med. 158:857 (1983).

    Google Scholar 

  4. J. W. Adamson, W. J. Dopovic and J. E. Brown, in: “Hematopoitetic Cell Differentiation,” D. W. Golde, M. J. Cline, D. Metcalf, C. F. Fox, eds., Academic Press, New York (1978).

    Google Scholar 

  5. A. W. Burgess, D. Metcalf, N. A. Nicola and S.H.M. Russel, in: “Hematopoietic Cell Differentiation,” D. W. Golde, M. J. Cline, D. Metcalf, C. F. Fox, eds., Academic Press, New York (1978).

    Google Scholar 

  6. Y. P. Yung, R. Eger, G. Tertian and M.A.S. Moore, J. Immunol. 127: 794 (1981).

    CAS  Google Scholar 

  7. J. J. Farrar and J. Fuller-Bonar, J. Immunol. 117:274 (1976).

    Google Scholar 

  8. J. J. Farrar, W. J. Koopman and J. Fuller-Bonar, J. Immunol. 114:47 (1977).

    Google Scholar 

  9. J. J. Farrar, P. L. Simon, W. J. Koopman and J. F. Bonar, J. Immunol. 121: 1353 (1978).

    Google Scholar 

  10. D. D. Wood, J. Immunol. 123: 2400 (1979).

    Google Scholar 

  11. W. L. Farrar, S. B. Mizel and J. J. Farrar, J. Immunol. 124: 1371 (1980).

    CAS  Google Scholar 

  12. S. Gillis, P. E. Baker, F. W. Ruscetti and K. A. Smith, J. Exp. Med. 154:983 (1978).

    Google Scholar 

  13. J. J. Farrar, W. R. Benjamin, M. L. Hilfker, M. Howard, W. L. Farrar and J. Fuller-Farrar, Immunol. Rev. 63:129 (1982).

    Google Scholar 

  14. R. W. Ruscetti, D. A. Morgan and R. C. Gallo, J. Immunol. 122: 2527 (1979).

    Google Scholar 

  15. S. B. Mizel and D. L. Rosenstreich, J. Immunol. 122:2173 (1979).

    Google Scholar 

  16. J. J. Farrar, J. Fuller-Farrar, P. L. Simon, M. L. Hilfiker, B. M. Stadler and W. L. Farrar, J. Immunol. 125: 2555 (1980a).

    CAS  Google Scholar 

  17. J. J. Farrar, S. B. Mizel, J. Fuller-Bonar, M. L. Hllfiker and W. L. Farrar, Microbiol. 36: 39 (1980b).

    Google Scholar 

  18. K. A. Smith, L. B. Lachman, J. J. Oppenheim and M. F. Favata, J. Exp. Med. 151: 1551 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. E. L. Larsson, N. N. Iscove and A. Coutinho, Nature 283: 664 (1980).

    Article  CAS  Google Scholar 

  20. R. N. Moore, J. J. Oppenheim, J. J. Farrar, C. S. Carter, A. Waheed and R. K. Shadduck, J. Immunol. 3: 119 (1980).

    Google Scholar 

  21. R. N. Moore, J. T. Haffeld, J. J. Farrar, S. E. Mergenhagen, J. J. Oppenheim and R. K. Shadduck, Lymphokines 3: 119 (1981).

    CAS  Google Scholar 

  22. W. L. Farrar, H. M. Johnson and J. J. Farrar, J. Immunol. 126: 1120 (1981).

    CAS  Google Scholar 

  23. C. S. Henney, K. Kuribaysashi, D. E. Kern and S. Gillis, Nature 291: 335 (1981).

    Google Scholar 

  24. W. Domzig, B. M. Stadler and R. B. Herberman, J. Immunol. 130:1970 (1983).

    Google Scholar 

  25. D. A. Weignet, G. J. Stanton and H. M. Johnson, Infect. Immun. 41:992 (1983).

    Google Scholar 

  26. H. M. Johnson and W. L. Farrar, Cell. Immunol. 75:154 (1983).

    Google Scholar 

  27. P. S. Steeg, R. N. Moore, H. M. Johnson and J. J. Oppenheim, J. Exp. Med. 156:1780 (1983).

    Google Scholar 

  28. T. Y. Basham and T. C. Merigan, J. Immunol. 130: 1492 (1983).

    CAS  Google Scholar 

  29. B. Harfest, J. R. Huddleston, P. Casali, T. C. Merigun and M.B.A. Olstone, J. Immunol. 127: 2146 (1981).

    Google Scholar 

  30. D. N. Mannel and W. Falk, Cell. Immunol. 79: 396 (1983).

    Article  CAS  Google Scholar 

  31. J. R. Ortaldo, A. Mantovani, D. Hobbs, M. Rubinstein, S. Pestica and R. B. Herberman, Int. J. Cancer 31:285 (1983).

    Google Scholar 

  32. M. C. Howard, J. Farrar, M. Hilfiker, B. Johnson, T. Takatsu and W. L. Paul, J. Exp. Med. 155:914 (1982).

    Google Scholar 

  33. A. Schimpl and W. Wicker, Nature 237: 15 (1972).

    CAS  Google Scholar 

  34. T. Kasahara, J. Y. Djeu, S. F. Dougherty and J. J. Oppenheim, J. Immunol. 131: 2379 (1983).

    PubMed  CAS  Google Scholar 

  35. A. Hapel, J. C. Lee, W. L. Farrar and J. W. Ihle, Cell 25: 179 (1981).

    Article  CAS  Google Scholar 

  36. J. W. Schrader and I. Clark-Lewis, J. Immunol. 129:30 (1982).

    Google Scholar 

  37. E. Hazum, K-J. Chang and P. Cuatrecasas, Science 205: 1033 (1979).

    Article  CAS  Google Scholar 

  38. S. C. Gilman, J. M. Schwartz, R. J. Milner, F. E. Bloom and J. D. Feldman, PNAS 79: 4226 (1982).

    Article  CAS  Google Scholar 

  39. P. M. Mathews, C. J. Froelich, W. L. Sibbitt and A. D. Bankhurst, J. Immunol. 130:1658 (1983).

    Google Scholar 

  40. Y. Yamasaki, K. Shimamura, A. Kizu, M. Nakagawa and H. Ijichi, Life Sciences 31: 471 (1982).

    Article  CAS  Google Scholar 

  41. H.O.J. Cailler and A. C. Roy, Nature 248: 24 (1974).

    Article  Google Scholar 

  42. R. S. Childers, S. M. Lambert and G. LaRiviere, Life Sciences 33: 215 (1983).

    Article  CAS  Google Scholar 

  43. R. D. Maca, Immunopharmacol. 6: 267 (1983).

    Article  Google Scholar 

  44. P. E. Baker, J. V. Fahey and A. Munck, J. Exp. Med. 61:52 (1981).

    Google Scholar 

  45. P. N. Shek and B. H. Sabiston, Int. J. Immunopharmacol. 5:23 (1983).

    Google Scholar 

  46. C. I. Thompson, J. W. Kreider, P. L. Black, T. J. Schmidt and D. L. Margules, Science 220: 1183 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farrar, W.L. (1986). Relationship between Lymphokine and Opiatergic Modulation of Lymphocyte Proliferation. In: Plotnikoff, N.P., Faith, R.E., Murgo, A.J., Good, R.A. (eds) Enkephalins and Endorphins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0557-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0557-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0559-8

  • Online ISBN: 978-1-4899-0557-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics