Advertisement

Effects on the Immune System of Lesioning and Stimulation of the Nervous System: Neuroimmunomodulation

  • Branislav D. Jankovic
  • Novera Herbert Spector

Abstract

The ancient Egyptians and Greeks, among others, knew that defense against disease involved “mind.” Today as monists, many scientists (including the authors of this chapter) believe that “mind” is a function of the nervous system, most particularly the brain. More than a few specialists in science today have developed severe tunnel vision: they see only a small piece of the whole integrated biological entity (the organism). The organism itself does not know that it is supposed to be divided like the departments of a medical school, so it functions as a unit. Thus the ancients were correct on this aspect of life, whereas some educated researchers of today fail to appreciate the connections between the brain and the immune system (Spector, 1980).

Keywords

Chick Embryo Brain Lesion Pineal Gland Experimental Allergic Encephalomyelitis Anterior Hypothalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., Matsushima, S. Kachi, T., and Ito, T. Lymphoid tissue in the pineal region of the mouse: a histological and histochemical study, Arch. Histol. Jap., 33: 263, 1971.PubMedGoogle Scholar
  2. Abinder, A.A., The effect of electric stimulation of the anterior portion of the hypothalamus on reconstitution of immune reaction of the body, Zh. Mikrobiol. Epidemiol. Immunobiol., 41: 47, 1964.Google Scholar
  3. Abramchik, G.V., and Shuvalova N.S. The role of the hypothalamus in the pathogenesis of experimental allergic encephalomyelitis, Zh.Nevropatol.Psikiatr., 73: 988, 1973.Google Scholar
  4. Ahlqvist, J. Endocrine Influence on Lymphatic Organs, Immune Responses, Inflammation and Autoimmunity. Almqvist and Wiksell Int. Stockholm, 1976.Google Scholar
  5. Ambrose, C.T., The essential role of corticosteroids in the induction of the immune response in vitro, in Hormones and Immune Response, G.E.W. Wolstenholme and J. Knight, eds. Churchill, London, pp. 100, 1970.Google Scholar
  6. Amir, S. Brown, Z.W. and Zelman, A., The role of endorphins in stress: evidence and speculations. Neurosci. Biobehay.Rev., 4: 77, 1980.Google Scholar
  7. Baçiu, I., The role of the central nervous system in the inducement of the phagocytic reaction. DoctoralGoogle Scholar
  8. dissertation, Institute of Physiol. and Med. Physics, Univ. of Cluj, 1946. ( Romanian: English translation available. )Google Scholar
  9. Baçiu, I., and Ivanov, A. The role of hypothalamic centres in the immune specific response., Physiologie, 21 (4): 251, 1984.PubMedGoogle Scholar
  10. Baçiu, I., Olteanu, A., Prodan, T. Baiescu, M. and Vaida, A. Changes of phagocytic biological rhythm by reproduction of circadian times and by influences upon hypothalamus. Proc., First Int. Workshop on NIM, Bethesda, Md., November 1984, in press, 1985.Google Scholar
  11. Banerjee S., and Margulis, L. Mitotic arrest by melatonin, Exp.Cell.Res., 78: 314, 1973.PubMedGoogle Scholar
  12. Banet, S., Brandt, S. and Hensel, H. The effect of continuously cooling the hypothalamic preoptic area on antibody titre in the rat, Experientia, 38: 965, 1982.PubMedGoogle Scholar
  13. Bargmann, W., Der Thymus, in Handbuch der Mikroskopischen Anatomie., Springer, Berlin. VI (4): 1–145, 1943.Google Scholar
  14. Barone, R.M., and Das Gupta, T.K. Role of pinealectomy on the Walker 256 carcinoma in rats, J. Surg. Oncol., 2: 3132, 1970.Google Scholar
  15. Belokrylôv, G.A. and Sofronov., B.N., Effect of thymic and cortical low-molecular polypeptides on different stages of immune response in mice. Immunologia, 4: 66, 1980. (in Russian).Google Scholar
  16. Benetato, G., Oprisiu, C. and Baciu, I. Sur le role du systeme nerveux central dans le declenchement de la reaction phagocytaire, Recuil d’Etudes Medicales, Ed. Inst. de Cultura Universala. Bucharest, 1949.Google Scholar
  17. Besedovsky, H.O. and Sorkin,.E., Network of immuneneuroendocrine interactions. Clin. Exp. Immunol., 27: 1, 1977.PubMedGoogle Scholar
  18. Betz, T.W., The effects of embryonic pars distalis grafts on the development of hypophysectomized chick embryos, Gen.Comp.Endocrinol., 9: 172, 1967.PubMedGoogle Scholar
  19. Bishopric, N.H., Cohen, H.J. and Lefkowitz, R.J. Betaadrenergic receptors in lymphocyte subpopulations, J. Allergy Clin. Immunol., 65: 29, 1980.PubMedGoogle Scholar
  20. Biziére, K., Renoux, M. and Renoux, G. Modulation of the T-cell lineage by the cerebral neocortex, Proc., First Intl. Workshop on NIM, Bethesda, MD, Nov. 1984, in press, 1985.Google Scholar
  21. Blalock. J.E., and Smith, E.M. Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphin, Proc. Natl.Acad. Sci. USA, 77: 5972, 1980.Google Scholar
  22. Bovera, A., Sui nervi della ghiandola di timo, Giron Acad. Med. Torino, 62: 1, 1899.Google Scholar
  23. Bowen, F.P., Immunological reactions after cortical lesions in rabbits, Arch. Neurol., 19: 398, 1968.PubMedGoogle Scholar
  24. Braeucker, W., Die Nerven des Thymus., Z. Anat. Entw., 69: 309, 1923.Google Scholar
  25. Breathen, L.R., Forre, O.T. Husby, G., and Williams, R.G., Jr. Evidence for Fc receptors in human choroid plexus, Clin. Immunolo. Immunopathol., 14: 284, 1979.Google Scholar
  26. Brodde, O.E., Engel, G. Hoyer, D., Bock, K.D., and Weber, F. The,d -adrenergic receptor in human lymphocytes: Subclassification by the use of a new radio-ligand, ()-125 Iodacyanopindolol, Life Sci., 29: 2189, 1981.Google Scholar
  27. Brooks, W.H., Cross, R.J. Roszman, T.L., and Markesbery, W.R. Neuroimmunomodulation: neural anatomic basis for impairment and facilitation, Ann. Neurol., 12: 56, 1982.Google Scholar
  28. Bulloch, K., Neuroendocrine-immune circuitry pathways included with the induction and persistence of humoral immunity, University Microfilm International, Ann Arbor, MI, 727–1064 (Ph.D. dissertation, 1981, UCSD), 1982.Google Scholar
  29. Bulloch, K., A light and ultrastructural analysis of innervation of the thymus gland during the perinatal period, Neurosc. Abst., 20: 572, 1982.Google Scholar
  30. Bulloch, K., Neuroanatomy of lymphoid tissue: a review, in Neural Modulation of Immunity, Guillemin, R., Cohn,M. and Melnechuk, T.,eds. Raven Press, N.Y., pp. 111–141, 1985.Google Scholar
  31. Bulloch, K., and Cullen, M.R. An analysis of the thymic CNS relationship in the chick, Immunology, Fifth International Congress of Immunol. (Abst. ), 1983.Google Scholar
  32. Bulloch, K., Cullen, M.R. Davis, M.L. and Schwartz, R.H. Neuroimmunology of the thymus gland, Neurology, 33(4) Suppl. #2:194,pp 187 ff., 1983.Google Scholar
  33. Bulloch, K., and Loy, R. The development of innervation in the thymus gland of wildtype and of the neuroimmune mutant Staggerer, Society for Neurosciences, Abstract. 26. 5, 1980.Google Scholar
  34. Bulloch, K., and Moore, R.Y. Central nervous system projections to the thymus gland. Possible pathways for the regulation of the immune response, Anat. Rec., 196: 25A, 1980a.Google Scholar
  35. Bulloch, K., and Moore, R.Y. Nucleus ambiguous projections to thymus gland -Possible pathways for regulation of the immune response and the neuroendocrine network, Am. Ass. Anat. (Abstr.), 25A, 1980b.Google Scholar
  36. Bulloch, K. and Moore, R.Y. Thymus gland innervation by brainstem and spinal cord in mouse and rat, Am. J. Anat., 162: 157, 1981.PubMedGoogle Scholar
  37. Cabanac, J., Les nerfs du thymus, Bull. Assoc. Anat., 25: 97, 1931.Google Scholar
  38. Calvo, W., The innervation of the bone marrow in laboratory animals, Am. J.Anat., 123: 315, 1968.PubMedGoogle Scholar
  39. Calvo, W., Bone marrow hemopoiesis in the human fetus, in Adv. Physiol. Sci., Vol. 6 Genetics, Structure and Function of Blood Cells, S.R. Hollan, G. Gardos, B. Sardaki, eds., Akademiak Kiado, Budapest, 1981.Google Scholar
  40. Calvo, W., and Forteza-Vila, J., Schwann cells of the bone marrow., Blood, 36: 186, 1970.Google Scholar
  41. Castro, F. de, Technique pour la coloration du systeme nerveux quand il est porvu de ses etuis osseux, Tray. Lab. Rech. Biol. Univ. Madrid., 23: 427, 1925.Google Scholar
  42. Castro, F. de, Quelques observations sur l’intervention du système nerveux autonome dans l’ossification. innervation du tissu osseus de la moel osseuse, Tray. Labor. Rech. Biol. Univ. Madrid, 26: 215, 1929.Google Scholar
  43. Cinader, B. (ed.), Immunology of Receptors, Marcel Dekker, New York, 1977.Google Scholar
  44. Cipin, A.B., and Malcev. V.N. Effect of hypothalamic stimulation on normal antibodies in the blood, Patol. Fiziol., 11: 83 (in Russian), 1967.Google Scholar
  45. Claman, N.H., Corticosteroids and lylmphoid cells. New Engl. J. Med., 287: 388, 1972.PubMedGoogle Scholar
  46. Cogburn, L.A., and Glick, B. Lymphopoiesis in the chicken pineal gland, Am.J.Anat., 162: 131, 1981.PubMedGoogle Scholar
  47. Cogburn, L.A., and Glick, B. Functional lymphocytes in the chicken pineal gland, J.Immunol., 130: 2109, 1983.PubMedGoogle Scholar
  48. Cordier, P. and Coulouma, P. Les nerfs du thymus, Ann. Anat. Path., 1104, 1933.Google Scholar
  49. Crabtree, G.R., Munck, A. and Smith, K.A., Glucocorticoids and lymphocytes. I. Increased glucocorticoid receptor levels in antigen-stimulated lymphocytes. J. Immunol., 124: 2430, 1980.PubMedGoogle Scholar
  50. Cross, R.J., Brooks, W.H. and Roszman, T.L. Hypothalamic-immune interactions. I. The acute effect of anterior hypothalamic lesions on the immune response, Brain Res., 196: 79, 1980.PubMedGoogle Scholar
  51. Cross, R.J., Brooks, W.H. Roszman, T. L., and Markesbery, W.R. Hypothalamic-immune interactions. Effects of hypophysectomy on neuroimmunomodulation, J. Neurol. Sci., 53: 557, 1982.Google Scholar
  52. Cross, R.J., Jackson, J.C. Markesbery W.R., Brooks, W.H. and Roszman, T.L. Modulation of Immune Function by Electrolytic and Chemical Lesions of the Central Nervous System, Proc., First Intl. Workshop on NIM, Bethesda, Md. Nov. 1984, in press, 1985.Google Scholar
  53. Cross, R.J., Markesbery, W.R., Brooks, W.H. and Roszman, T.L. Hypothalamic-immune interactions: Neuromodulation of natural killer activity by lesioning of the anterior hypothalamus. Immunology 51: 399.Google Scholar
  54. Crotti, A.,Thyroid and Thymus. Lea & Febiger, Philadelphia and New York, pp 536–559, 1918.Google Scholar
  55. Cullen, M.R., and Bulloch, K. Innervation of thymus transplants in nude mice: An ultrastructural study, Society for Neuroscience, 9 (1): 117, Abstract # 3410, 1983.Google Scholar
  56. Cunnane, S.C., Manku, M.S. and Horrobin, D.F. The pineal and regulation of fibrosis: pinealectomy as a model of primary biliary cirrhosis: roles of melatonin and prostaglandins in fibrosis and regulation of T-lymphocytes, Med. Hypotheses, 5: 403, 1979.PubMedGoogle Scholar
  57. Dahlstrôm, A.B., and Zetterstrom, B.E.M Noradrenaline stores in nerve terminals of the spleen: changes during hemorrhagic shock, Science, 147: 1583, 1965.Google Scholar
  58. Dann, J.A., Wachtel, S.S. and Rubin. A.L. Possible involvement of the central nervous system in graft rejection, Transplantation, 27: 223, 1979.PubMedGoogle Scholar
  59. Das Gupta, T.K., and Terz, J. Influence of pineal gland on the growth and spread of melanoma in the hamster, Cancer Res., 27: 1306, 1967.PubMedGoogle Scholar
  60. Del Rey, A., Besedovsky, H.O. Sorkin,E., DaPrada, M., and Arrenbrecht, S. Immunoregulation mediated by the sympathetic nervous system, Cell.Immunol., 63: 329, 1981.PubMedGoogle Scholar
  61. Draskoci, M., and Jankovic, B.D. Involution of thymus and suppression of immune response in rats treated with reserpine, Nature, 202: 408, 1964.PubMedGoogle Scholar
  62. Eskra, J.D., Stevens, J.S. and Carty, T.J. i2-adrenergic receptors in thymocytes, Fed.Proc., 37: 687, 1978.Google Scholar
  63. Exner, A., and Boese, J. Uber experimentelle Extirpation der Glandula pinealis, Dtsch.Z.Chir., 107: 182, 1910.Google Scholar
  64. Faith, R.E., Liang, H.J. Murgo, A.J., and Plotnikoff, N.P. Neuroimmunomodulation with enkephalins: enhancement of human natural killer cell activity in vitro, Clin., Immunol. Immunopathol., 31: 412, 1984.Google Scholar
  65. Fauci, A.S., Mechanisms of corticosteroid action on lymphocyte subpopulations. Clin. Exp. Immunol., 24: 54, 1976.PubMedGoogle Scholar
  66. Federoff, N.A., Terentyeva, E.I. Garfunkel, M.L., Tsesarskaya, T.P. and Rozanova, N.S. The bone marrow after damage to the sacral plexus and the sympathetic innervation, Arch. Pat., 14: 25 (in Russian), 1952.Google Scholar
  67. Ferguson, R.M., Schmidtke, J.R. and Simmons, R.L. Effects of psychoactive drugs on in vitro lymphocyte activation, Birth Defects: Original Article Series, 14: 379, 1978.Google Scholar
  68. Filipp, G., and Szentivanyi, A. Anaphylaxis and the nervous system, III, Ann. Allergy, 16: 306, 1958.PubMedGoogle Scholar
  69. Fillenz, M., The innervation of the cat spleen, Proc. Roy Soc. B London, 174: 459–468, 1970.Google Scholar
  70. Foa, C., Hypertrophie des testicles et de la créte après l’extirpation de la glande pineale chez le coq, Arch. Ital. Biol., 57: 233, 1912.Google Scholar
  71. Freedman, D.X., and Fenichel, G. Effect of midbrain lesion on experimental allergy, Arch. Neurol. Psychiat., 79: 164, 1958.Google Scholar
  72. Fuchs, S., Immunology of the nicotinic acetylcholine receptor, Curr. Topics Microbiol. Immunol., 85: 1, 1979.Google Scholar
  73. Fugo, N.W., Effects of hypophysectomy in the chick embryo, J. Exp.Zool., 85: 271, 1940.Google Scholar
  74. Fujiwara, M., Muryobayashi, T. and Shimamoto, K. Histochemical demonstration of monoamines in the thymus of rats, Japan J. Pharmocol., 16: 493, 1966.Google Scholar
  75. Gersbach, P., Contribution to the study of the innervation of the spleen. Comparative anatomical study, Arch. Anat. Histol. Embryol. (Strasbourg), 53 (5): 397, 1970.Google Scholar
  76. Ghali, W.M., Abdel-Rahman, S. Nagib, M. and Mahran, Z.Y. Intrinsic innervation and vasculature of pre-and post-natal human thymus, Acta anat., 108: 115, 1980.Google Scholar
  77. Gillespie, J.S., and Kirpekar, S.M. The histological localization of noradrenaline in the cat spleen, J.Physiol, 187: 69, 1966.PubMedGoogle Scholar
  78. Gilman, S.C., Schwartz, J.M., Milner, R.J., Bloom, F.E. and Feldman, J.D. Beta-endorphin enhances lymphocyte proliferative responses, Proc. Natl.Acad. Sci. USA, 79: 4226, 1982.Google Scholar
  79. Giron, L.T., Crutacher, K.A. and Davis, J.N. Lymph nodes-A possible site for sympathetic neuronal regulation of immune responses, Ann. Neurol., 8: 520, 1980.PubMedGoogle Scholar
  80. Glaser, W., Uber die motorische Innervation der Blutgefässe der Milz nebst einigen Bemerkungen der intramuralen Nervenversorgung der Blutgefasse Knochenmark, Z. Anat., 87: 741, 1928.Google Scholar
  81. Goldstein, M.M., The effect of bilateral destruction of the medial hypothalamic structures on the course of anaphylactic shock, Bull. Exp. Biol. Med., 82: 977, 1976.Google Scholar
  82. Goldstein, M.M., Antibody-forming cells of the rat spleen after the injury to the midbrain, Bull. Exp. Biol. Med., 85: 185, 1978.Google Scholar
  83. Gordon, D.S., Serge’eva, V.E. and Zelenova, I.G. Functional morphologyof adrenergic innervation and adrenocontaining structures in lymphoid organs, Arkh. Anat. Gistol. Embriol., 77: 13 (in Russian), 1979.Google Scholar
  84. Gordon, M.A., Cohen, J.J. and Wilson, I. B. Muscarinic cholinergic receptors in murine lymphocytes: Demonstration by direct binding, Proc. Nat.Acad.Sci. USA, 75: 2902, 1978.Google Scholar
  85. Gros, M., Note sur les nerfs des os, C.R. Acad. Sci., (Paris), 71: 1106, 1846.Google Scholar
  86. Grossman C.J., Nathan, P. and Sholiton, L.J. Specific androgen receptor in the thymus of the castrated male rat, Biol. Reprod., 18: 48A, 1978.Google Scholar
  87. Grossman C.J., Sholitan, L.J. Blaja, G.C., and Nathan, P. Rat thymic estrogen receptor: II. Physicochemical properties, J.Steroid. Chem., 11: 1241, 1979.Google Scholar
  88. Guiard, E., La Trépanation Cranienne: Chez les Neolithiques et Chez les Primitifs Modernes, Masson, Paris, 1930.Google Scholar
  89. Guillemin,R., The brain as an endocrine organ. Neurosci. Res. Prog. Bull. (Suppl.), 16:1, 1978.Google Scholar
  90. Hadden, J.W., Cyclic nucleotides in lymphocyte function, Ann. N.Y. Acad. Sci., 256: 352, 1975.PubMedGoogle Scholar
  91. Hadden, J.W., Hadden, E.M., and Middleton, E., Jr. Lymphocyte blast transformation. 1. Demonstration of adrenergic receptors in human peripheral lymphocytes, Cell. Immunol., 1: 583, 1970.PubMedGoogle Scholar
  92. Hall, N. R. McGillis, J.P. Spangelo, B.L., Healy, D.L. and Goldstein, A. Immunoreactive peptides and the central nervous system. Springer Seminar Imunopathol. 8: 153, 1985.Google Scholar
  93. Hallion, L., and Morel, L. L’innervation vaso-motrice du thymus, C.R. Soc. Biol. (Paris), 71: 382, 1911.Google Scholar
  94. Hallion, L., and Morel, L. L’innervation vaso-motrice du thymus, J. Physiol. Path. Gen., 14: 1, 1912.Google Scholar
  95. Halvorsen, S., Plasma erythropoietin levels following hypothalamic stimulation in the rabbit, Scan. J. Clin. Investig., 13: 564, 1961.Google Scholar
  96. Hammar, J.A., Glasrekonstruktionen zur Beleuchtung der fruhen embryonalen Enlwicklung der thymusinnervation, Vers. Verh. Anat. Ges., 41: 234, 1932.Google Scholar
  97. Hammar, J.A., Innervations-verhâltnisse der Krelorgane der Thymus bis in den 4 Fetalmonat, Z.Mikroskanst. Forsch., 8: 253, 1935.Google Scholar
  98. Harrison, L.C., Flier, J., Itin, A., Kahn, C.R. and Roth, J., Radioimmunoassay of the insulin receptor: a new probe of receptor structure and function. Science, 203: 544–547, 1979.PubMedGoogle Scholar
  99. Harting, K., Vergleichende Untersuchungen aber die mikroskopische Innervation der Milz des Menschen und einigen Saugetiere., Erg. Anat., 34: 1, 1944.Google Scholar
  100. Hazum, E., Chang, K.-J. and Cuatrecasas, P. Specific nonopiate receptors for beta-endorphin, Science, 205: 1033, 1979.PubMedGoogle Scholar
  101. Henney, C.S., Bourne, H.R. and Lichtenstein, L.M. The role of 3’,5’-adenosine monophosphate in the specific cytolytic activity of lymphocytes, J.Immunol., 108: 1526, 1972.PubMedGoogle Scholar
  102. Henson, E.C., Brunson, J.G., and Everes, C.G. Prevention of the Arthus reaction in rats and mice by combination of epinephrine and a phenothiazine derivate, propiomazine, Int. Arch. Allergy Appl. Immunol., 37: 458, 1970.PubMedGoogle Scholar
  103. Hughes, J., Centrally Acting Peptides, MacMillan Press London, 1978.Google Scholar
  104. Hilliano, G., Tell, G.P.E., Siegel, M.I. and Cuatrecasas, P. Guanosine 3’,5’-cyclic monophosphate and the action of insulin and acetylcholine, Proc. Nat. Acad. Sci. USA, 70: 2443, 1973.Google Scholar
  105. Isakovie, K., and Jankovic, B.D. Neuro-endocrine correlates of immunè response. U. Changes in the lymphatic organs of brain-lesioned rats, Int. Arch. Allergy Appl. Immunol., 45: 373, 1973.Google Scholar
  106. Isakovie, K., Jankovid, B.D., Micid, M., and Knezevié, Z. Thymus-bursa relationship in the developing chick embryo, in Aspects of Developmental and Comparative Immunology, I. J. B. Solomon, ed., pp. 217–220, Pergamon Press, Oxford, 1980.Google Scholar
  107. Jankovic, B.D., Structural correlates of immune microenvironment, in Microenvironmental Aspects of Immunity, B.D. Jankovid and K. Isakovid, eds., pp. 14, Plenum Press, New York., 1973.Google Scholar
  108. Jankovic B.D., The immune microenvironment is a multisystem, Immunol.Lett., 1: 145, 1979.Google Scholar
  109. Jankovi6, B.D., From immunoneurology to immunopsychiatry: neuromodulating activity of antibrain antibodies, Int. Rev. Neurobiol., 26: 249–314, 1985.Google Scholar
  110. Jankovic, B.D., and Isakovic, K. Neuro-endocrine correlates of immune response. I. Effects of brain lesions on antibody production, Arthus reactivity and delayed hypersensitivity in the rat, Int. Arch. Allergy Appl. Immunol., 45: 360, 1973.Google Scholar
  111. Jankovic, B.D., Isakovic, K. and Horvat, J. Effect of a lipid fraction from rat thymus on delayed hypersensitivity reactions of neonatally. ~thymectomized rats, Nature, 208: 356, 1965.PubMedGoogle Scholar
  112. Jankovic, B.D., Isakovid, K. and Kneevic, Z. Ontogeny of the immuno-neuro-endocrine relationship. Changes in lymphoid tissues of chick embryos surgically decapitated at 33–38 hours of incubation, Develop.Comp. Immunol., 2: 479, 1978.Google Scholar
  113. Jankovic, B.D., Isakovic, K. and Knezevié, Z. Ontogeny of the immuno-neuro-endocrine relationship. Early thymectomy of the chick embryo, Immunol. Lett., 1: 7, 1979.Google Scholar
  114. Jankovic, B.D., Isakovié, K. Markovic, B.M. and Rajcevie, M. Immunological capacity of the chicken embryo. U. Humoral immune responses in embryos and young chickens bursectomized and sham-bursectomized at 52–64 h of incubation, Immunology, 32: 689, 1977.PubMedGoogle Scholar
  115. Jankovic, B.D., Isakovié, K., Mieic, M., and Kneevic, Z. Thymus-bursa-hypophysis interactions in the developing chick embryo,in, Aspects of Developmental and Comparative Immunology I. J. B. Solomon, ed., pp 529–532, Pergamon Press, Oxford, 1981a.Google Scholar
  116. Jankovic, B.D., Isakovic, K., Micic’, M., and Knezevic, Z., The embryonic lympho-neuro-endocrine relationship, Clin. Immunol Immunopathol., 18: 108, 1981b.Google Scholar
  117. Jankovi6, B.D., Isakovid, K. and Mi6ic, M. The thymushypophysis interaction in the developing chick embryo. Thymic epithelial cells in hypopohysectomized embryos, in In Vivo Immunology, P. Nieuwenhuis, A.A. van den Broek and G. Hanna, Jr., eds., pp. 343–348, Plenum Press, N.Y., 1982.Google Scholar
  118. Jankovic, B.D., Isakovic, K. and Petrovie, S. Effect ofpinealectomy on immune reactions in the rat, Immunology, 18: 1, 1970Google Scholar
  119. Jankovic, B.D., Isakovic, K. and Petrovie, S. Effect ofpinealectomy on immune reactions in the rat, Immunology, 18: 1, 1970.Google Scholar
  120. Jankovic’ B.D., and Igvaneski, M. Experimental allergic encephalomyelitis in thymectomized, bursectomized and normal chickens, Int. Arch. Allergy Appl. Immunol., 23: 188, 1963.PubMedGoogle Scholar
  121. Jânkovic, B.D., Jankovic, D.Lj. and Savovski, Lj. Effect of early epiphysectomy on the immune system of the chick embryo, Proc., First Int. Workshop on NIM, Bethesda, Md., November, 1984 in press, 1985.Google Scholar
  122. Jankovic, B.D., Jovanova, K. and Markovic, B.M. Effect of hypothalamic stimulation on the immune reactions in the rat, Period. Biol., 81: 211, 1979.Google Scholar
  123. Jankovic, B.D., Mi6id, M., Jankovic, D. Lj. and Isakovic, K. The brain-thymus-hypophysis interconnection during embryogenesis, Immunobiology, 165: 285, 1983.Google Scholar
  124. Jânkovic, B.D., Nesic, K. and Markovic, B.M. Neuroimmunomodulation: electrical stimulations of the hypothalamus and cortex potentiate the immune response, Neurosci. Lett., 14: S180, 1983a.Google Scholar
  125. Johnson, H.M., Smith, E.M., Torres, B.A. and Blalock, J.E. Regulation of the in vitro antibody response by neuroendocrine hormones, Proc. Nat. Acad. Sci USA, 79: 4171, 1982.PubMedGoogle Scholar
  126. Kanematsu, S., and Mikami, S.I. Mects of hypothalamicirions on protein-bound Iodine and thyroidal I uptake in the chicken, Gen. Comp. Endocrinol., 14: 25, 1970.PubMedGoogle Scholar
  127. Kappers, J.A., The development, topographical relations and innervation of the epiphysis cerebri in the albino rat, Z. Zellforsch., 52: 163, 1960.PubMedGoogle Scholar
  128. Kappers, J.A., The mammalian pineal gland, a survey, Acta Neurochirurgica, 34: 109, 1976.PubMedGoogle Scholar
  129. Keller, S.E., Stein, M., Camerino, M.S., Schleifer, S.J., and Sherman, J. Suppression of lymphocyte stimulation by anterior hypothalamic lesions in the guinea pig, Cell. Immunol, 52: 334, 1980.PubMedGoogle Scholar
  130. Khai, L.M., Kovalenkova, M.V. Korneva, E.A., and Seranova, A.E., Further study on the role of the hypothalamic region in the regulation of immunogenesis, Zh. Mikrobiol. Epidemiol. Immunobiol., 41: 7, 1964.Google Scholar
  131. Kiss, F., Topographic relationship between the nerve plexuses and lymph nodes of the abdomen, Arch. Surgery, 21: 405, 1980.Google Scholar
  132. Klimenko, V.M., The study of some neuronal mechanisms of hypothalamic regulation of immune reactions in rabbits, Avtoref. Kand. diss. Inst. for Exper. Med. Leningrad (Russian), 1972.Google Scholar
  133. Knoche, H., Zur feineren Innervation des Thymus von Menschen, Z.Zellforsch., 41: 556, 1955.PubMedGoogle Scholar
  134. Kopeloff, L.M., Barrera, S.E. and Kopeloff, N. Recurrent convulsive seizures in animals produced by immunologic and chemical means, Am.J. Psychiat., 98: 881, 1942.Google Scholar
  135. Korneva, E.A., and Khai, L.M. Role of the sympatho-adrenal system in the control of immunogenesis, Fiziol. Zh.SSSR, 47: 1298 (in Russian), 1961.Google Scholar
  136. Korneva, E.A. and Khai, L.M. Effect of destruction of areas within the hypothalamic region on the process of immunogenesis, Fiziologicheskii Zh. SSSR. 49(1):42 (in Russian), (English translation in Fed. Proc. Translations Suppl. 23 (1): T88, 1964.Google Scholar
  137. Korneva, E.A., and Khai, L.M. Effect of stimulation of various structures of the mesencephalon on the course of immunological reactions, Fiziol. Zh. SSSR I.M. Sechenova, 53: 42 (in Russian), 1967.Google Scholar
  138. Korneva, E.A., and Klimenko, V.M., Neuronale hypothalamusakivitat and homoostatische reactionen, Ergeb. exp. Med., 23: 373–382, 1976.Google Scholar
  139. Kostowiecki, M., Untersuchungen über Nervenendigungen in den Thymus menschlicher Feten., Vorl. Mitteil. Anat. Anza Bd., 80: 231, 1934.Google Scholar
  140. Kostowiecki, M., Uber die Nervenfasern und Nervenendigung in der Thymus wahrend der Fetalperiode, Zool. Pol., 3: 23, 1938.Google Scholar
  141. Kozlov, V.A., Anaphylaxis and the vegetative nervous system, Meditzina, Moscow, 1973.Google Scholar
  142. Krall, J.F., Connelly, M. and Tuck, M.L. In vitro desensitization of human lymphocytes by epinephrine, Biochem. Pharmacol., 31:117, 1982.Google Scholar
  143. Krieger, D.T. and Liotta, A.S., Pituitary hormones in brain:where, how and why? Science, 205: 366, 1979.PubMedGoogle Scholar
  144. Kudoh, G., Hoshi, K. and Murakami,T. Fluorescence microscopic and enzyme histochemical studies of the innervation of the human spleen, Arch. Histol. Jap., 42 (2): 169–180, 1979.Google Scholar
  145. Kuntz, A. and Richins, C.A. Innervation of the bone marrow, J. Comp. Neurol., 83: 213–222, 1945.Google Scholar
  146. Lambert, P.L., Harrell, E.H., and Achterberg,J. Medial hypothalamic stimulation decreases the phagocytic activity of the reticuloendothelial system, Physiol. Psychol, 9: 193, 1981.Google Scholar
  147. Lane, M.A., and Strom, T.B. The muscarinic cholinergic receptor: the effect of T cell activation, Fed. Proc., 37: 1788, 1978.Google Scholar
  148. Lapin, V., Influence of simultaneous pinealectomy and thymectomy on growth and formation of the Yoshida sarcoma in rats, Exp. Pathol., 9: 108, 1974.Google Scholar
  149. Le Fur, G., Phan, T. Canton, T., Tur, C. and Uzan, A. Evidence for a coupling between doipaminergic receptors and phospholipid methylation in mouse Blymphocytes, Life Sci., 29: 2737, 1981.Google Scholar
  150. Le Fur, G., Phan, T. and Uzan, A. Identification of stereospecific (3H) spiroperidol binding sites in mammalian lymphocytes, Life Sci., 26: 1139, 1980.PubMedGoogle Scholar
  151. Leeson, C.R., and Leeson, T.S., in Histology, C.R. Leeson and T.S. Leeson, eds., p. 475, W.B. Saunders, Philadelphia, 1976.Google Scholar
  152. Leger, J., and Masson, G. Factors influencing an anaphylactic reaction in the rat, Fed. Proc., 6: 150, 1947.PubMedGoogle Scholar
  153. Lentz, H., Die Nervencersorgung der Kanichen-Milz, Z.Zellforsch., 37: 494, 1952.Google Scholar
  154. Luckey, T.D., Thymic Hormones, Univ. Park Press, Baltimore, 1973.Google Scholar
  155. Luparello, T.J., Stein, M. and Park, C.D. Effect of hypothalamic lesions on rat anaphylaxis, Am. J. Physiol., 207: 911, 1964.PubMedGoogle Scholar
  156. MacManus, J.P. Whitfield, J.F. and Youdale, T., Stimulation by epinephrine of adenylcyclase activity, cyclic AMP formation, DNA synthesis and cell proliferation in populatiions of rat thymic lymphocytes, J. Cell Comp. Physiol., 77: 103, 1971.Google Scholar
  157. Macris, N.T., Schiavi, R.C. Camerino, M.S. and Stein, M. Effect of hypothalamic lesions on immune processes in the guinea pig, Am.J. Physiol., 219: 1209, 1970.Google Scholar
  158. Macris, N.T., Schiavi, R.C., Camerino, M.S. and Stein, M. Effect of hypothalamic lesions on passive anaphylaxis in the guinea pig, Am. J. Physiol., 222: 1054, 1972.PubMedGoogle Scholar
  159. Maestroni, G.J.M. and Pierpaoli, W., Pharmacological control of the hormonally mediated immune response, in Psychoneuroimmunology, pp. 405–428, R. Ader, Ed. Academic press, New York, 1981.Google Scholar
  160. Mangilli, G., Motta, M. and Martini, L. Control of adrenocorticotropic hormone secretion, in Neuroendocrinology „ L. Martini and W.F. Ganong, eds. pp. 298–360, Academic Press, N.Y., 1966.Google Scholar
  161. Markesbery, W.R., Cross, R.J., Roszman, T.L. and Brooks, W.H. Aging changes in Neuroimmunomodulation in the Fischer 344 Rat, Proc. First Int. Workshop on NIM, Bethesda, Md. November 1984, in press, 1985.Google Scholar
  162. Maslinski, C., and Karszewski, W. The protective influence of brain stimulation by electric currents on histamine shock in guinea pigs, Bull. Acad. Pol. Sci.l, 5: 57, 1957.Google Scholar
  163. MaslixIski, W., Grabszewska, E. and Ryzewski, J., Acetylcholine receptors on rat lymphocytes. Biochim. Biophys. Acta, 633: 269, 1980.Google Scholar
  164. Mathews, P.M., Froelich, C.J., Sibbitt, W. L., Jr. and Bankhurst, A. D. Enhancement of natural cytotoxicity by beta-endorphin, J. Immunol., 130: 1658, 1983.PubMedGoogle Scholar
  165. Miéie, M., Jankovic, D. Lj., Isakovie, K. and Jankovic, B.D. Forebrain and hypophysis affect development of the bursa of Fabricius in the chick embryo, Period. Biol., 85 (Suppl 3): 9, 1983.Google Scholar
  166. Miles, K., Quintans, J., Chelmicka-Schorr, E. and Arnason, B.G.W. The sympathetic nervous system modulates antibody response to thymus-independent antigens, J. Neuroimmunol., 1: 101, 1981.PubMedGoogle Scholar
  167. Miller, G.C., Murgo, A.J. and Plotnikoff, N.P. EnkephalinsEnhancement of active T-cell rosettes from lymphoma patients, Clin. Immunol. Immunopathol., 26: 446, 1983.Google Scholar
  168. Miller, G.C., Murgo, A.J. and Plotnikoff, N.P. EnkephalinsEnhancement of active T-cell rosettes from normal volunteers, Clin. Immunol. Immunopathol., 31: 132, 1984.Google Scholar
  169. Miller, M., and McCuskey, R. Innervation of bone marrow in the rabbit., Scand. J. Haemat., 10: 17, 1973.Google Scholar
  170. Mitrova E. and Mayer, V. Phenotiatine-induced alterations of immune response in experimental tick-borne encephalitis: morphological model analysis of events, Acta. Virol., 20: 479, 1976.PubMedGoogle Scholar
  171. Morgane, P.J., Panksepp, J. Editors. Handbook of the Hypothalamus. Vol I. Anatomy, Dekker, N.Y., 1979.Google Scholar
  172. Munck, A., Young, D.A., Mosher, K.M. and Wira, C.R., Specific metabolic and physiocochemical interactions of glucocorticosteroids with rat thymus cells, in Hormones in Development, pp. 191–201, M. Hamburgh and E.J.W. Barrington, Eds., Appleton Century Crofts, New York, 1971.Google Scholar
  173. Nauta, W.J.H., and Haymaker, W. Hypothalamic nuclei and fiber connections, in: The Hypothalamus, pp. 139209, W. Haymaker, E. Anderson and W.J.H. Nauta, Eds., Thomas, Springfield, 1969.Google Scholar
  174. Nilzen, A., The influence of the thyroid gland on hypersensitivity reactions in animals. I., Acta. Allerg., 7: 231, 1954.Google Scholar
  175. Noerthen, K., Die Nervenversorgung der Katzenmilz., Morph. Jb., 95: 55, 1955.Google Scholar
  176. Ottolenghi, D., Sur les nerfs de la moelle des os, Arch. Ital. Biol, 37: 73–80, 1902.Google Scholar
  177. Paunovic, V.R., Petrovic, S. and Jankovic, B.D. Influence of early postnatal hypothalamic lesions on the immune response in adult rats, Period. Biol.,(Suppl.) 78: 50, 1976.Google Scholar
  178. Payan, D.G., Brewster, D.R. and Goetzl, E.J. Specific stimulation of human T- lymphocytes by substance P, J. Immunol., 131: 1613, 1983.PubMedGoogle Scholar
  179. Payan, D.G., and Goetzl, E.J. Neuropeptide regulation of immediate and delayed hypersensitivity, in Neuroimmunomodulation II, ed. N.H. Spector et al. Gordon and Breach, N.Y., in press, 1986.Google Scholar
  180. Pearse, A.G.E., and Takor, T.T. Embryology of the diffuse neuroendocrine system and its relationship to the common peptides, Fed. Proc., 38: 2288, 1979.PubMedGoogle Scholar
  181. Petrovski, I.N., Effect of stimulation of brain regions on agglutinin titers, Zh. Mikrobiol. Epidemiol. Immunobiol., 32: 103 (in Russian), 1961.Google Scholar
  182. Pierpaoli, W., Fabris, N. and Sorkin, E. Developmental hormones and immunological maturation, in Hormones and the Immune Response, G. E. W. Wolstenholme and J. Knight, eds. pp. 126–143, Churchill, London, 1970.Google Scholar
  183. Pines, L., and Majman, R. The innervation of the thymus, J. Nerv. Dis., 69: 361, 1929.Google Scholar
  184. Plezitiy, K.D., Magaeava, S.V. and Evseev, V.A. Effect of lesions and stimulations of dorsal hippocampus on Arthus reaction, in Physiology of Immune Homeostasis,II Symposium, pp. 34–35, Rostov-on-Don, (in Russian), 1977.Google Scholar
  185. Plotnikoff, N.P., and Miller, G.C. Enkephalins as immunomodulators, Int.J. Immunopharmacol., 5: 437, 1983.PubMedGoogle Scholar
  186. Polyak, A.I., Rumbeshet, L.M. and Sinichkin, A.A. Antibody synthesis following electrocoagulation of the posterior hypothalamic nucleus, Zh. Mikrobiol. Epidemiol. Immunobiol., 46: 52 (in Russian), 1969.Google Scholar
  187. Quay, W.B., Histological structure and cytology of the pineal organ in birds and mammals, Prog. Brain Res., 10: 49, 1965.PubMedGoogle Scholar
  188. Reilly, F.D., McCluskey, P.A., Miller, M.L., McCluskey, R. S., and Meineke,H.A. Innervation of the periarteriolar lymphatic sheath of the spleen, Tissue & Cell, 11: 121, 1979.Google Scholar
  189. Reilly, F. D., McCluskey, R.S. and Meineke, H.A. Studies of the hematopoietic microenvironment. VIII. Adrenergic and cholinergic innervation of the murine spleen, Anat. Rec., 185: 109, 1976.Google Scholar
  190. Relia, W., and Lapin, V. Immunocompetence of pinealectomized and simultaneously pinealectomized and thymectomized rats, Oncology, 33: 3, 1976.Google Scholar
  191. Renaud, L.P. Neurophysiological organization of the endocrine hypothalamus, in The Hypothalamus, pp. 269–301, S. Reichlin, R.J. Baldessarini and J.B. Martin, Eds., Raven Press, New York, 1978.Google Scholar
  192. Renoux, G. Differentiation of T-cell lineage by sodium diethyldithiocarbamate (DTC). Influence of the neocortex, in New Trends in Human Immunology and Cancer Immunotherapy, pp. 966–994, Serrou, B. and Rosenfeld, C., Eds, Doin, Paris, 1980.Google Scholar
  193. Renoux, G., Biziére, K., Renoux, M. and Guillaumin, J.M., The production of T-cell inducing factors in mice is controlled by the brain neocortex. Scand. J. Immunol., 17: 45, 1983.PubMedGoogle Scholar
  194. Renoux, G., Bizière, K., and Renoux, M. Imuthiol reveals brain cortical asymmetry in the regulation of T-cell activities, Proc., First Int. Workshop on NIM, Bethesda, Md. November, 1984, in press, 1985.Google Scholar
  195. Richman, D.P., and Arnason, B.G.W. Nicotinic acetylcholine receptor: Evidence for a functionally distinct receptor on human lymphocytes, Proc. Natl. Acad. Sci. USA, 76: 4632, 1979.Google Scholar
  196. Rimon, G., Hanski, E, Braun, S. and Levitzki, A., Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature, 276: 394, 1978.PubMedGoogle Scholar
  197. Riegele, L., Uber die mikroskopische Innervation der Milz., Z. Zellforsch., 9: 511, 1929.Google Scholar
  198. Rodin, A.E., The growth and spread of Walker 256 carcinoma in pinealectomized rats, Cancer Res., 27: 1545, 1963.Google Scholar
  199. Romanoff, A.L., The Avian Embryo, MacMillan, New York, 1960.Google Scholar
  200. Romanoff, A.L. and Romanoff, A.J. Pathogenesis of the Avian Embryo, Wiley-Interscience, New York, 1972.Google Scholar
  201. Romieu, M. and Jullien, G. Sur l’existence d’une formation lymphoid dans l’epiphyse de Gallinaces, C.R. Soc. Biol., 136: 626, 1942.Google Scholar
  202. Rossi, F., La distribuzione di fibre nervose nell ‘uomo e particolarmente nel midollo osseo, studieta con metodi specifici delle neurofibrille., Boll. Soc. Ital. Biol. Sper., 3: 863, 1929.Google Scholar
  203. Roszman, T.L., Cross, R.J. Brooks, W.H., and Markesbery, W.R. Hypothalamic-immune interactions. II. The effect of hypothalamic lesioins on the ability of adherent spleen cells to limit lymphocyte blastogenesis, Immunology, 45: 737, 1982.Google Scholar
  204. Ruf, K., and Steiner, F.A. Steroid-sensitive neurons in rat hypothalamus and mid-brain:identification by microelectrophoresis, Science, 156: 667–669, 1967.PubMedGoogle Scholar
  205. Schiavi, R.C., Adams, J. and Stein, M. Effect of hypothalamic lesions on histamine toxicity in the guinea pig, Am. J. Physiol., 211: 1269, 1966.PubMedGoogle Scholar
  206. Schiavi, R.C., Macris, N.T. Camerino, M.S. and Stein, M. Effect of hypothalamic lesions on immediate hypersensitivity, Am. J. Physiol., 228: 596, 1975.Google Scholar
  207. Schowing, J., Influence de l’excision du rhombencéphale et du mesencephale sur la morphogenese du crane chez l’embryon de Poulet, Compt. Rend. Acad. Sci., Paris, 248: 2391, 1959a.Google Scholar
  208. Schowing, J., Influence de l’excision du mesencéphale et du prosencephale sur la morphogenese du crane chez l’embryon du Poulet. Compt. Rend. Acad. Sci., Paris. -249: 170, 1959b.Google Scholar
  209. Schowing, J., Influence inducrice de l’encéphale embryonnaire sur le développement du crane chez le Poulet. I. Influence de l’excision des territoires nerveux anterieurs sur le dévelopment cranien. J. Embryol. Exp. Morph., 19: 9, 1968a.PubMedGoogle Scholar
  210. Schowing, J., Influence inducrice de l’encéphale embryonnaire sur le development du crane chez le Poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et podterieur sur le development cranien. J. Embryol. Exp. Morphol., 19: 23, 1968b.PubMedGoogle Scholar
  211. Schreiner, G.F., and Unanue, E.R. The modulation of spontaneous and anti-Ig-stimulated motility of lymphocytes by cyclic nucleotides and adrenergic and cholinergic agents, J.Immunol, 114: 802, 1975.PubMedGoogle Scholar
  212. Schulster, D., and Levitzki, A. Cellular Receptors for Hormones and Neurotransmitters, John Wiley & Sons, Chichester, 1980.Google Scholar
  213. Serge’eva, V.E., Histotopography of catecholamines in the mammalian thymus., Bull. Exp. Biol. Med., 77: 456, (in Russian), 1974.Google Scholar
  214. Shapiro, H.M., and Strom, T.B. Electophysiology of T-lymphocyte cholinergic receptors, Proc. Nat. Acad. Sci. USA, 77: 4317, 1980.PubMedGoogle Scholar
  215. Shavit, Y., Lewis, J.W. Terman, G.W., G.le, R.P., and Liebeskind, J.C., Opoid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity, Science, 223: 188, 1984.Google Scholar
  216. Shavlev, V.N., On the innervation of lymph nodes., Arkh. Anat. Giol. Embriol., 54(2): 96 (in Russian), 1968.Google Scholar
  217. Sherman, N.A., Smith, R.S. and Middleton, E. Jr. Effect of adrenergic compounds, aminophylline and hydrocortisone on in vitro immunoglobulin synthesis by normal human peripheral lymphocytes, J. Allergy Clin. Immunol., 52: 13, 1973.PubMedGoogle Scholar
  218. Shiotani, Y., and Ban. T. Effect of long-term electrical stimulation of the hypothalamus on pituitary-target gland system in rabbits, Med. J. Osaka Univ., 20: 119, 1969.Google Scholar
  219. Singh, U., Millson, D.S. Smith, P.A., and Owen, J.J.T. Identification of beta-adrenoreceptors during thymocyte ontogeny in mice, Eur. J. Immunol., 9: 31, 1979.PubMedGoogle Scholar
  220. Sjolander, A., and Strandberg, A. Ober die zur Thymusdrüse tretenden Nerven, Upsala, Lak forh Forkh., 20: 243, 1915.Google Scholar
  221. Smith, E., and Blalock, J.E. Lymphocyte production of neurally active pituitary hormone-like molecules, Proc., First Int. Workshop on NIM, in press, 1985.Google Scholar
  222. Smith, K.A., Crabtree, G.R., Kennedy, S.J. and Munck, A., Glucocorticoid receptors and glucocorticoid sensitivity of mitogen stimulated and unstimulated human lymphocytes, Nature, 267: 523, 1977.PubMedGoogle Scholar
  223. Solov’ev V.N., On the sources of innervation of the thymus gland., Arkh. Anat. Gistol. Embriol., 51: 76–82 (in Russian), 1966.Google Scholar
  224. Spector, N.H. Can hypothalamaic lesions change circulating antibody responses to antigens? Current Problems in Experimental and Clinical Allergy (V.I. Pytskii, ed.),pp. 21–37, Moscow, ( Russian ), 1979.Google Scholar
  225. Spector, N.H. The. The “central state” of the hypothalamus in health and disease:old and new concepts. Physiology of the Hypothalamus, P, Morgane and J. Panksepp, eds., Dekker, N.Y., pp. 453–517, 1980.Google Scholar
  226. Spector, N.H., Anatomical and physiological connections between the central nervous and the immune systems (neuroimmunomodulation), in Immunoregulation, pp. 231–258, N. Fabris, E. Garaci, J. Hadden, and N.A. Mitchison, eds. Plenum Press, New York, 1983.Google Scholar
  227. Spector, N.H. Information explosions in an old-new research domain. in The Year in Immunology 1984–85, pp. 202207 J.M. Cruse and R.E. Lewis, Jr. eds. Karger Basel, 1985.Google Scholar
  228. Spector, N.H., Cannon, L.T. Diggs, C.L., Morrison, J.E., and Koob,G.F. Hypothalamic lesions: effects on immunological responses, Physiologist, 18: 401, 1975.Google Scholar
  229. Spector, N.H., Koob, G.F. and Baron,S. Hypothalamic influence upon interferon and antibody responses to Newcastle Disease. Virus infection: preliminary report. Proc. Internatl. Union Physiol. Sci. 13:711 (Abstr.)Google Scholar
  230. Spector, N.H. and E. Korneva Neurophysiology and Neuroimmunomodulation in Psychoneuroimmunology R. Ader, ed., Academic Press, N.Y., pp. 449–473, 1981.Google Scholar
  231. Spector, N.H., Martin, L.K., Diggs, C.L. and Koob, G.F. Hypothalamic lesions: effects upon malaria and antibody production in rats. Proceedings of the 26th International Congress, New Delhi, India. Proc. Inter. Union Physiol. Sci (Abstr. ), 1974.Google Scholar
  232. Speplewski, C. and Vogel, W. Changes in brain serotonin affect leucocytes, T-cells and natural killer cell activity in rats, in preparation for press, 1985.Google Scholar
  233. Speranskii, A.D., A Basis for the Theory of Medicine (first Russian Ed.) (English translation, International Publisher, N.Y. 1943 ), 1934.Google Scholar
  234. Spetien, H., Kunert-Radek, J. Karasek, E., and Pawlikowski, M. Dopamine increases cyclic AMP concentration in the rat spleen lymphocytes in vitro, Biochem.Biophys. Res. Commun., 10: 1057, 1981.Google Scholar
  235. Spiroff, B.E.N., Embryonic and post-embryonic development of the pineal body of the domestic fowl, Am. J. Anat., 103: 375, 1958.PubMedGoogle Scholar
  236. Stalberg, H., Effects of extirpation of the epiphysis cerebri in 6-day chick embryos, Dissertation, Olaf Norlis Forlag, Oslo.,1965.Google Scholar
  237. Stimson, W.H., and McCruden, A.B. Androgen binding cytosol receptors in the rat thymus: physicochemical properties, specificity, and localization, Thymus, 3: 105, 1981.PubMedGoogle Scholar
  238. Strom, T.B., Diesseroth, A. Morganroth, J. C.rpenter, C.B., and Merrill, J.P. Alteration of the cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase, Proc.Natl. Acad. Sci. USA, 69: 2995, 1972.Google Scholar
  239. Strom, T.B., Lundin, A.P. and Carpenter, C.B. The role of cyclic nucleotides in lymphocyte activation and function, Prog. Clin. Immunol., 3: 115, 1977.PubMedGoogle Scholar
  240. Strom, T.B., Sytkowski, A.J., Carptenter, C.B., and Merrill, J.P., Cholinergic augmentation of lymphocyte-medicated cytotoxicity, A study of the cholinergic receptor of cytotoxic T-lymphocytes. Proc. Natl. Acad. Sci, USA, 71: 1330, 1974.PubMedGoogle Scholar
  241. Szentivanyi, A., and Filipp, G. Anaphylaxis and the nervous system, II., Ann. Allergy, 16: 143, 1958.PubMedGoogle Scholar
  242. Szentivanyi, A., and Szekely, J. Anaphylaxis and the nervous system, IV., Ann. Allergy, 16: 389, 1958.PubMedGoogle Scholar
  243. Takeyama, K., Morphologische Beobachtungen über diesich im Knochenmark verteilenden, peripheren Nerven, Mitt. med. Akad. Kioto, 16: 895, 1936.Google Scholar
  244. Tcheng, K.T., Fibres nerveuses momifieés dans les corpuscules de Hassall chez le chat, Bull. Histol. Appl., 27: 100, 1950.Google Scholar
  245. Terni, T., Les cellules myoides du thymus des sauropsides et leur innervation., Bull. Ass. Anat., Paris, 3: 448, 1928.Google Scholar
  246. Terni, T., Ricerche istologiche sull innervazione del timo dei Sauropsidi, Z. Zellforsch, 9: 377, 1929.Google Scholar
  247. Terni, T., L’innervazione del timo, Arch.Zool. Ital., 16: 714, 1931.Google Scholar
  248. Terni, T., and Muratori, G. Sulla innervazione del timo e del corporvultim onbranchiale dopo estirpazione del ganglio nodoso del vago, Monit. Zool. Ital., 43: Suppl., 85, 1933.Google Scholar
  249. Thakur, P.K., and Manchanda, S.K. Hypothalamic influence on the activity of reticuloendothelial system in cat, Indian J.Physiol. Pharmacol., 13: 11, 1969.Google Scholar
  250. Thieblot, L., Structure and function of the epiphysis cerebri, Prog. Brain Res., 10: 479, 1965.PubMedGoogle Scholar
  251. Thrasher, S.G., Bernardis, L.L. and Cohen,S. The immune response in hypothalamic-lesioned and hypophysectomized rats, Int.Arch. Allergy Appl. Immunol., 41: 813, 1971.PubMedGoogle Scholar
  252. Tischendorf, F., Beobachtungen über die feinere Innervation der Milz, Kölner Univ. Verlag, Kôln, 1948.Google Scholar
  253. Tonkoff, W., Zur Kenntnis der Neervender Lymphdrüsen, Anat. Anzeiger, 16: 456, 1899.Google Scholar
  254. Triggle, D.J., Neurotransmitter-Receptor Interactions, Academic Press, London, 1971.Google Scholar
  255. Tyrey, L., and Nalbandov. A.V. Influence of anterior hypothalamic lesions on circulating antibody titers in the rat, Am. J. Physiol., 222: 179, 1972.PubMedGoogle Scholar
  256. Uede, T., Ishii, Y. Matsuura, A. Shimogawara, I. and Kikuchi, K. Immunohistochemical study of lymphocytes in rat pineal gland: selective accumulation of T-lymphocytes, Anat. Rec., 199: 239, 1981.Google Scholar
  257. Variot, P., and Remy, C. Sur les nerfs de la moelle des os., J. Anat. Physiol., 6: 273, 1880.Google Scholar
  258. Volik, V.Ia, Development of the neural apparatus of inguinal lymph nodes in man, Arkh. Anat. Gistol. Embriol., 45:(5): 34 (in Russian), 1965.Google Scholar
  259. Warejcka, D.J., and Levy, N.L. Central nervous system (CNS) control of the immune response: effect of hypothalamic lesions on PHA responsiveness in rats, Fed. Proc., 39: 914, 1980.Google Scholar
  260. Weber, R.J., and Pert, C.B. Opiatergic modulation of the immune system, in Central and Peripheral Endorphins: Basic and Clinical Aspects, E.E. Muller and A.R. Genazzani,eds, pp. 35–42, Raven Press, New York, 1984.Google Scholar
  261. Weibel, E.R., Stereological principles for morphometry in electron microscopic cytology, Int. Rev. Cytol., 26: 235, 1969.PubMedGoogle Scholar
  262. Wertman, E., Ovadia, H., Feldman, S., and Abramsky, O. Prevention of experimental autoimmune disease by anterior hypothalamus lesion in rat, Proceedings First Int. Workshop on NIM, Bethesda, Maryland, November 1984, in press, 1985.Google Scholar
  263. Williams, J.M., and Felten, D.L. Sympathetic innervation of murine thymus and spleen: A comparative histofluorescence study, Anat. Rec., 199: 531, 1981.PubMedGoogle Scholar
  264. Williams J.M., Peterson, R.G. Shea, P.A., Schmedtje, J.F., Bauer, D.C. and Felten, D.L. Sympathetic innervation of murine thymus and spleen: Evidence for a functional link between the nervous and immune systems., Brain Res. Bull., 6: 83, 1981.PubMedGoogle Scholar
  265. Williams, L.T., Snyderman, R. and Lefkowitz, R.J. Identification of beta-adrenergic receptors in human lymphocytes by (-) [3H) alprenolol binding, J. Clin. Invest., 57: 49, 1976.Google Scholar
  266. Wingstrand, K.O., The Structure and Development of the Avian Pituitary, Gleerup, Lund, 1951.Google Scholar
  267. Wolff, E., Les bases de la teratogenese expérimentale des vertébres amniotes d’apAs les resultats des methodes directes, Arch.Anat. Histol.Embryol. 22: 1, 1936.Google Scholar
  268. Wybran, J., Appelboom, T. Famaly, J.P. and Govaerts, A. Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T-lymphocytes, J. Immunol., 123: 1068, 1979.PubMedGoogle Scholar
  269. Yu, D.T.Y., and Clements, P.J. Human lymphocyte subpopulations: effect of epinephrine, Clin. Exp. Immunol., 25: 472, 1976.PubMedGoogle Scholar
  270. Zetterstrom, B.E., HAfelt, M.T. Norbert, K.A., and Olsson,P. Possibilities of a direct adrenergic influence on blood elements of the dog spleen, Acta. Chir. Scand., 139: 17, 1973.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Branislav D. Jankovic
    • 1
  • Novera Herbert Spector
    • 2
  1. 1.Immunology Research CenterBelgradeYugoslavia
  2. 2.Fundamental Neurosciences ProgramNational Institutes of Health, NINCDSBethesdaUSA

Personalised recommendations