Skip to main content

Effects on the Immune System of Lesioning and Stimulation of the Nervous System: Neuroimmunomodulation

  • Chapter
Enkephalins and Endorphins

Abstract

The ancient Egyptians and Greeks, among others, knew that defense against disease involved “mind.” Today as monists, many scientists (including the authors of this chapter) believe that “mind” is a function of the nervous system, most particularly the brain. More than a few specialists in science today have developed severe tunnel vision: they see only a small piece of the whole integrated biological entity (the organism). The organism itself does not know that it is supposed to be divided like the departments of a medical school, so it functions as a unit. Thus the ancients were correct on this aspect of life, whereas some educated researchers of today fail to appreciate the connections between the brain and the immune system (Spector, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Matsushima, S. Kachi, T., and Ito, T. Lymphoid tissue in the pineal region of the mouse: a histological and histochemical study, Arch. Histol. Jap., 33: 263, 1971.

    PubMed  CAS  Google Scholar 

  • Abinder, A.A., The effect of electric stimulation of the anterior portion of the hypothalamus on reconstitution of immune reaction of the body, Zh. Mikrobiol. Epidemiol. Immunobiol., 41: 47, 1964.

    CAS  Google Scholar 

  • Abramchik, G.V., and Shuvalova N.S. The role of the hypothalamus in the pathogenesis of experimental allergic encephalomyelitis, Zh.Nevropatol.Psikiatr., 73: 988, 1973.

    CAS  Google Scholar 

  • Ahlqvist, J. Endocrine Influence on Lymphatic Organs, Immune Responses, Inflammation and Autoimmunity. Almqvist and Wiksell Int. Stockholm, 1976.

    Google Scholar 

  • Ambrose, C.T., The essential role of corticosteroids in the induction of the immune response in vitro, in Hormones and Immune Response, G.E.W. Wolstenholme and J. Knight, eds. Churchill, London, pp. 100, 1970.

    Google Scholar 

  • Amir, S. Brown, Z.W. and Zelman, A., The role of endorphins in stress: evidence and speculations. Neurosci. Biobehay.Rev., 4: 77, 1980.

    CAS  Google Scholar 

  • Baçiu, I., The role of the central nervous system in the inducement of the phagocytic reaction. Doctoral

    Google Scholar 

  • dissertation, Institute of Physiol. and Med. Physics, Univ. of Cluj, 1946. ( Romanian: English translation available. )

    Google Scholar 

  • Baçiu, I., and Ivanov, A. The role of hypothalamic centres in the immune specific response., Physiologie, 21 (4): 251, 1984.

    PubMed  Google Scholar 

  • Baçiu, I., Olteanu, A., Prodan, T. Baiescu, M. and Vaida, A. Changes of phagocytic biological rhythm by reproduction of circadian times and by influences upon hypothalamus. Proc., First Int. Workshop on NIM, Bethesda, Md., November 1984, in press, 1985.

    Google Scholar 

  • Banerjee S., and Margulis, L. Mitotic arrest by melatonin, Exp.Cell.Res., 78: 314, 1973.

    PubMed  CAS  Google Scholar 

  • Banet, S., Brandt, S. and Hensel, H. The effect of continuously cooling the hypothalamic preoptic area on antibody titre in the rat, Experientia, 38: 965, 1982.

    PubMed  CAS  Google Scholar 

  • Bargmann, W., Der Thymus, in Handbuch der Mikroskopischen Anatomie., Springer, Berlin. VI (4): 1–145, 1943.

    Google Scholar 

  • Barone, R.M., and Das Gupta, T.K. Role of pinealectomy on the Walker 256 carcinoma in rats, J. Surg. Oncol., 2: 3132, 1970.

    Google Scholar 

  • Belokrylôv, G.A. and Sofronov., B.N., Effect of thymic and cortical low-molecular polypeptides on different stages of immune response in mice. Immunologia, 4: 66, 1980. (in Russian).

    Google Scholar 

  • Benetato, G., Oprisiu, C. and Baciu, I. Sur le role du systeme nerveux central dans le declenchement de la reaction phagocytaire, Recuil d’Etudes Medicales, Ed. Inst. de Cultura Universala. Bucharest, 1949.

    Google Scholar 

  • Besedovsky, H.O. and Sorkin,.E., Network of immuneneuroendocrine interactions. Clin. Exp. Immunol., 27: 1, 1977.

    PubMed  CAS  Google Scholar 

  • Betz, T.W., The effects of embryonic pars distalis grafts on the development of hypophysectomized chick embryos, Gen.Comp.Endocrinol., 9: 172, 1967.

    PubMed  CAS  Google Scholar 

  • Bishopric, N.H., Cohen, H.J. and Lefkowitz, R.J. Betaadrenergic receptors in lymphocyte subpopulations, J. Allergy Clin. Immunol., 65: 29, 1980.

    PubMed  CAS  Google Scholar 

  • Biziére, K., Renoux, M. and Renoux, G. Modulation of the T-cell lineage by the cerebral neocortex, Proc., First Intl. Workshop on NIM, Bethesda, MD, Nov. 1984, in press, 1985.

    Google Scholar 

  • Blalock. J.E., and Smith, E.M. Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphin, Proc. Natl.Acad. Sci. USA, 77: 5972, 1980.

    Google Scholar 

  • Bovera, A., Sui nervi della ghiandola di timo, Giron Acad. Med. Torino, 62: 1, 1899.

    Google Scholar 

  • Bowen, F.P., Immunological reactions after cortical lesions in rabbits, Arch. Neurol., 19: 398, 1968.

    PubMed  CAS  Google Scholar 

  • Braeucker, W., Die Nerven des Thymus., Z. Anat. Entw., 69: 309, 1923.

    Google Scholar 

  • Breathen, L.R., Forre, O.T. Husby, G., and Williams, R.G., Jr. Evidence for Fc receptors in human choroid plexus, Clin. Immunolo. Immunopathol., 14: 284, 1979.

    Google Scholar 

  • Brodde, O.E., Engel, G. Hoyer, D., Bock, K.D., and Weber, F. The,d -adrenergic receptor in human lymphocytes: Subclassification by the use of a new radio-ligand, ()-125 Iodacyanopindolol, Life Sci., 29: 2189, 1981.

    Google Scholar 

  • Brooks, W.H., Cross, R.J. Roszman, T.L., and Markesbery, W.R. Neuroimmunomodulation: neural anatomic basis for impairment and facilitation, Ann. Neurol., 12: 56, 1982.

    Google Scholar 

  • Bulloch, K., Neuroendocrine-immune circuitry pathways included with the induction and persistence of humoral immunity, University Microfilm International, Ann Arbor, MI, 727–1064 (Ph.D. dissertation, 1981, UCSD), 1982.

    Google Scholar 

  • Bulloch, K., A light and ultrastructural analysis of innervation of the thymus gland during the perinatal period, Neurosc. Abst., 20: 572, 1982.

    Google Scholar 

  • Bulloch, K., Neuroanatomy of lymphoid tissue: a review, in Neural Modulation of Immunity, Guillemin, R., Cohn,M. and Melnechuk, T.,eds. Raven Press, N.Y., pp. 111–141, 1985.

    Google Scholar 

  • Bulloch, K., and Cullen, M.R. An analysis of the thymic CNS relationship in the chick, Immunology, Fifth International Congress of Immunol. (Abst. ), 1983.

    Google Scholar 

  • Bulloch, K., Cullen, M.R. Davis, M.L. and Schwartz, R.H. Neuroimmunology of the thymus gland, Neurology, 33(4) Suppl. #2:194,pp 187 ff., 1983.

    Google Scholar 

  • Bulloch, K., and Loy, R. The development of innervation in the thymus gland of wildtype and of the neuroimmune mutant Staggerer, Society for Neurosciences, Abstract. 26. 5, 1980.

    Google Scholar 

  • Bulloch, K., and Moore, R.Y. Central nervous system projections to the thymus gland. Possible pathways for the regulation of the immune response, Anat. Rec., 196: 25A, 1980a.

    Google Scholar 

  • Bulloch, K., and Moore, R.Y. Nucleus ambiguous projections to thymus gland -Possible pathways for regulation of the immune response and the neuroendocrine network, Am. Ass. Anat. (Abstr.), 25A, 1980b.

    Google Scholar 

  • Bulloch, K. and Moore, R.Y. Thymus gland innervation by brainstem and spinal cord in mouse and rat, Am. J. Anat., 162: 157, 1981.

    PubMed  CAS  Google Scholar 

  • Cabanac, J., Les nerfs du thymus, Bull. Assoc. Anat., 25: 97, 1931.

    Google Scholar 

  • Calvo, W., The innervation of the bone marrow in laboratory animals, Am. J.Anat., 123: 315, 1968.

    PubMed  CAS  Google Scholar 

  • Calvo, W., Bone marrow hemopoiesis in the human fetus, in Adv. Physiol. Sci., Vol. 6 Genetics, Structure and Function of Blood Cells, S.R. Hollan, G. Gardos, B. Sardaki, eds., Akademiak Kiado, Budapest, 1981.

    Google Scholar 

  • Calvo, W., and Forteza-Vila, J., Schwann cells of the bone marrow., Blood, 36: 186, 1970.

    Google Scholar 

  • Castro, F. de, Technique pour la coloration du systeme nerveux quand il est porvu de ses etuis osseux, Tray. Lab. Rech. Biol. Univ. Madrid., 23: 427, 1925.

    Google Scholar 

  • Castro, F. de, Quelques observations sur l’intervention du système nerveux autonome dans l’ossification. innervation du tissu osseus de la moel osseuse, Tray. Labor. Rech. Biol. Univ. Madrid, 26: 215, 1929.

    Google Scholar 

  • Cinader, B. (ed.), Immunology of Receptors, Marcel Dekker, New York, 1977.

    Google Scholar 

  • Cipin, A.B., and Malcev. V.N. Effect of hypothalamic stimulation on normal antibodies in the blood, Patol. Fiziol., 11: 83 (in Russian), 1967.

    Google Scholar 

  • Claman, N.H., Corticosteroids and lylmphoid cells. New Engl. J. Med., 287: 388, 1972.

    PubMed  CAS  Google Scholar 

  • Cogburn, L.A., and Glick, B. Lymphopoiesis in the chicken pineal gland, Am.J.Anat., 162: 131, 1981.

    PubMed  CAS  Google Scholar 

  • Cogburn, L.A., and Glick, B. Functional lymphocytes in the chicken pineal gland, J.Immunol., 130: 2109, 1983.

    PubMed  CAS  Google Scholar 

  • Cordier, P. and Coulouma, P. Les nerfs du thymus, Ann. Anat. Path., 1104, 1933.

    Google Scholar 

  • Crabtree, G.R., Munck, A. and Smith, K.A., Glucocorticoids and lymphocytes. I. Increased glucocorticoid receptor levels in antigen-stimulated lymphocytes. J. Immunol., 124: 2430, 1980.

    PubMed  CAS  Google Scholar 

  • Cross, R.J., Brooks, W.H. and Roszman, T.L. Hypothalamic-immune interactions. I. The acute effect of anterior hypothalamic lesions on the immune response, Brain Res., 196: 79, 1980.

    PubMed  CAS  Google Scholar 

  • Cross, R.J., Brooks, W.H. Roszman, T. L., and Markesbery, W.R. Hypothalamic-immune interactions. Effects of hypophysectomy on neuroimmunomodulation, J. Neurol. Sci., 53: 557, 1982.

    Google Scholar 

  • Cross, R.J., Jackson, J.C. Markesbery W.R., Brooks, W.H. and Roszman, T.L. Modulation of Immune Function by Electrolytic and Chemical Lesions of the Central Nervous System, Proc., First Intl. Workshop on NIM, Bethesda, Md. Nov. 1984, in press, 1985.

    Google Scholar 

  • Cross, R.J., Markesbery, W.R., Brooks, W.H. and Roszman, T.L. Hypothalamic-immune interactions: Neuromodulation of natural killer activity by lesioning of the anterior hypothalamus. Immunology 51: 399.

    Google Scholar 

  • Crotti, A.,Thyroid and Thymus. Lea & Febiger, Philadelphia and New York, pp 536–559, 1918.

    Google Scholar 

  • Cullen, M.R., and Bulloch, K. Innervation of thymus transplants in nude mice: An ultrastructural study, Society for Neuroscience, 9 (1): 117, Abstract # 3410, 1983.

    Google Scholar 

  • Cunnane, S.C., Manku, M.S. and Horrobin, D.F. The pineal and regulation of fibrosis: pinealectomy as a model of primary biliary cirrhosis: roles of melatonin and prostaglandins in fibrosis and regulation of T-lymphocytes, Med. Hypotheses, 5: 403, 1979.

    PubMed  CAS  Google Scholar 

  • Dahlstrôm, A.B., and Zetterstrom, B.E.M Noradrenaline stores in nerve terminals of the spleen: changes during hemorrhagic shock, Science, 147: 1583, 1965.

    Google Scholar 

  • Dann, J.A., Wachtel, S.S. and Rubin. A.L. Possible involvement of the central nervous system in graft rejection, Transplantation, 27: 223, 1979.

    PubMed  CAS  Google Scholar 

  • Das Gupta, T.K., and Terz, J. Influence of pineal gland on the growth and spread of melanoma in the hamster, Cancer Res., 27: 1306, 1967.

    PubMed  Google Scholar 

  • Del Rey, A., Besedovsky, H.O. Sorkin,E., DaPrada, M., and Arrenbrecht, S. Immunoregulation mediated by the sympathetic nervous system, Cell.Immunol., 63: 329, 1981.

    PubMed  Google Scholar 

  • Draskoci, M., and Jankovic, B.D. Involution of thymus and suppression of immune response in rats treated with reserpine, Nature, 202: 408, 1964.

    PubMed  CAS  Google Scholar 

  • Eskra, J.D., Stevens, J.S. and Carty, T.J. i2-adrenergic receptors in thymocytes, Fed.Proc., 37: 687, 1978.

    Google Scholar 

  • Exner, A., and Boese, J. Uber experimentelle Extirpation der Glandula pinealis, Dtsch.Z.Chir., 107: 182, 1910.

    Google Scholar 

  • Faith, R.E., Liang, H.J. Murgo, A.J., and Plotnikoff, N.P. Neuroimmunomodulation with enkephalins: enhancement of human natural killer cell activity in vitro, Clin., Immunol. Immunopathol., 31: 412, 1984.

    Google Scholar 

  • Fauci, A.S., Mechanisms of corticosteroid action on lymphocyte subpopulations. Clin. Exp. Immunol., 24: 54, 1976.

    PubMed  CAS  Google Scholar 

  • Federoff, N.A., Terentyeva, E.I. Garfunkel, M.L., Tsesarskaya, T.P. and Rozanova, N.S. The bone marrow after damage to the sacral plexus and the sympathetic innervation, Arch. Pat., 14: 25 (in Russian), 1952.

    Google Scholar 

  • Ferguson, R.M., Schmidtke, J.R. and Simmons, R.L. Effects of psychoactive drugs on in vitro lymphocyte activation, Birth Defects: Original Article Series, 14: 379, 1978.

    CAS  Google Scholar 

  • Filipp, G., and Szentivanyi, A. Anaphylaxis and the nervous system, III, Ann. Allergy, 16: 306, 1958.

    PubMed  CAS  Google Scholar 

  • Fillenz, M., The innervation of the cat spleen, Proc. Roy Soc. B London, 174: 459–468, 1970.

    CAS  Google Scholar 

  • Foa, C., Hypertrophie des testicles et de la créte après l’extirpation de la glande pineale chez le coq, Arch. Ital. Biol., 57: 233, 1912.

    Google Scholar 

  • Freedman, D.X., and Fenichel, G. Effect of midbrain lesion on experimental allergy, Arch. Neurol. Psychiat., 79: 164, 1958.

    CAS  Google Scholar 

  • Fuchs, S., Immunology of the nicotinic acetylcholine receptor, Curr. Topics Microbiol. Immunol., 85: 1, 1979.

    CAS  Google Scholar 

  • Fugo, N.W., Effects of hypophysectomy in the chick embryo, J. Exp.Zool., 85: 271, 1940.

    CAS  Google Scholar 

  • Fujiwara, M., Muryobayashi, T. and Shimamoto, K. Histochemical demonstration of monoamines in the thymus of rats, Japan J. Pharmocol., 16: 493, 1966.

    CAS  Google Scholar 

  • Gersbach, P., Contribution to the study of the innervation of the spleen. Comparative anatomical study, Arch. Anat. Histol. Embryol. (Strasbourg), 53 (5): 397, 1970.

    CAS  Google Scholar 

  • Ghali, W.M., Abdel-Rahman, S. Nagib, M. and Mahran, Z.Y. Intrinsic innervation and vasculature of pre-and post-natal human thymus, Acta anat., 108: 115, 1980.

    Google Scholar 

  • Gillespie, J.S., and Kirpekar, S.M. The histological localization of noradrenaline in the cat spleen, J.Physiol, 187: 69, 1966.

    PubMed  CAS  Google Scholar 

  • Gilman, S.C., Schwartz, J.M., Milner, R.J., Bloom, F.E. and Feldman, J.D. Beta-endorphin enhances lymphocyte proliferative responses, Proc. Natl.Acad. Sci. USA, 79: 4226, 1982.

    CAS  Google Scholar 

  • Giron, L.T., Crutacher, K.A. and Davis, J.N. Lymph nodes-A possible site for sympathetic neuronal regulation of immune responses, Ann. Neurol., 8: 520, 1980.

    PubMed  CAS  Google Scholar 

  • Glaser, W., Uber die motorische Innervation der Blutgefässe der Milz nebst einigen Bemerkungen der intramuralen Nervenversorgung der Blutgefasse Knochenmark, Z. Anat., 87: 741, 1928.

    Google Scholar 

  • Goldstein, M.M., The effect of bilateral destruction of the medial hypothalamic structures on the course of anaphylactic shock, Bull. Exp. Biol. Med., 82: 977, 1976.

    Google Scholar 

  • Goldstein, M.M., Antibody-forming cells of the rat spleen after the injury to the midbrain, Bull. Exp. Biol. Med., 85: 185, 1978.

    Google Scholar 

  • Gordon, D.S., Serge’eva, V.E. and Zelenova, I.G. Functional morphologyof adrenergic innervation and adrenocontaining structures in lymphoid organs, Arkh. Anat. Gistol. Embriol., 77: 13 (in Russian), 1979.

    Google Scholar 

  • Gordon, M.A., Cohen, J.J. and Wilson, I. B. Muscarinic cholinergic receptors in murine lymphocytes: Demonstration by direct binding, Proc. Nat.Acad.Sci. USA, 75: 2902, 1978.

    Google Scholar 

  • Gros, M., Note sur les nerfs des os, C.R. Acad. Sci., (Paris), 71: 1106, 1846.

    Google Scholar 

  • Grossman C.J., Nathan, P. and Sholiton, L.J. Specific androgen receptor in the thymus of the castrated male rat, Biol. Reprod., 18: 48A, 1978.

    Google Scholar 

  • Grossman C.J., Sholitan, L.J. Blaja, G.C., and Nathan, P. Rat thymic estrogen receptor: II. Physicochemical properties, J.Steroid. Chem., 11: 1241, 1979.

    Google Scholar 

  • Guiard, E., La Trépanation Cranienne: Chez les Neolithiques et Chez les Primitifs Modernes, Masson, Paris, 1930.

    Google Scholar 

  • Guillemin,R., The brain as an endocrine organ. Neurosci. Res. Prog. Bull. (Suppl.), 16:1, 1978.

    Google Scholar 

  • Hadden, J.W., Cyclic nucleotides in lymphocyte function, Ann. N.Y. Acad. Sci., 256: 352, 1975.

    PubMed  CAS  Google Scholar 

  • Hadden, J.W., Hadden, E.M., and Middleton, E., Jr. Lymphocyte blast transformation. 1. Demonstration of adrenergic receptors in human peripheral lymphocytes, Cell. Immunol., 1: 583, 1970.

    PubMed  CAS  Google Scholar 

  • Hall, N. R. McGillis, J.P. Spangelo, B.L., Healy, D.L. and Goldstein, A. Immunoreactive peptides and the central nervous system. Springer Seminar Imunopathol. 8: 153, 1985.

    Google Scholar 

  • Hallion, L., and Morel, L. L’innervation vaso-motrice du thymus, C.R. Soc. Biol. (Paris), 71: 382, 1911.

    Google Scholar 

  • Hallion, L., and Morel, L. L’innervation vaso-motrice du thymus, J. Physiol. Path. Gen., 14: 1, 1912.

    Google Scholar 

  • Halvorsen, S., Plasma erythropoietin levels following hypothalamic stimulation in the rabbit, Scan. J. Clin. Investig., 13: 564, 1961.

    CAS  Google Scholar 

  • Hammar, J.A., Glasrekonstruktionen zur Beleuchtung der fruhen embryonalen Enlwicklung der thymusinnervation, Vers. Verh. Anat. Ges., 41: 234, 1932.

    Google Scholar 

  • Hammar, J.A., Innervations-verhâltnisse der Krelorgane der Thymus bis in den 4 Fetalmonat, Z.Mikroskanst. Forsch., 8: 253, 1935.

    Google Scholar 

  • Harrison, L.C., Flier, J., Itin, A., Kahn, C.R. and Roth, J., Radioimmunoassay of the insulin receptor: a new probe of receptor structure and function. Science, 203: 544–547, 1979.

    PubMed  CAS  Google Scholar 

  • Harting, K., Vergleichende Untersuchungen aber die mikroskopische Innervation der Milz des Menschen und einigen Saugetiere., Erg. Anat., 34: 1, 1944.

    Google Scholar 

  • Hazum, E., Chang, K.-J. and Cuatrecasas, P. Specific nonopiate receptors for beta-endorphin, Science, 205: 1033, 1979.

    PubMed  CAS  Google Scholar 

  • Henney, C.S., Bourne, H.R. and Lichtenstein, L.M. The role of 3’,5’-adenosine monophosphate in the specific cytolytic activity of lymphocytes, J.Immunol., 108: 1526, 1972.

    PubMed  CAS  Google Scholar 

  • Henson, E.C., Brunson, J.G., and Everes, C.G. Prevention of the Arthus reaction in rats and mice by combination of epinephrine and a phenothiazine derivate, propiomazine, Int. Arch. Allergy Appl. Immunol., 37: 458, 1970.

    PubMed  CAS  Google Scholar 

  • Hughes, J., Centrally Acting Peptides, MacMillan Press London, 1978.

    Google Scholar 

  • Hilliano, G., Tell, G.P.E., Siegel, M.I. and Cuatrecasas, P. Guanosine 3’,5’-cyclic monophosphate and the action of insulin and acetylcholine, Proc. Nat. Acad. Sci. USA, 70: 2443, 1973.

    Google Scholar 

  • Isakovie, K., and Jankovic, B.D. Neuro-endocrine correlates of immunè response. U. Changes in the lymphatic organs of brain-lesioned rats, Int. Arch. Allergy Appl. Immunol., 45: 373, 1973.

    Google Scholar 

  • Isakovie, K., Jankovid, B.D., Micid, M., and Knezevié, Z. Thymus-bursa relationship in the developing chick embryo, in Aspects of Developmental and Comparative Immunology, I. J. B. Solomon, ed., pp. 217–220, Pergamon Press, Oxford, 1980.

    Google Scholar 

  • Jankovic, B.D., Structural correlates of immune microenvironment, in Microenvironmental Aspects of Immunity, B.D. Jankovid and K. Isakovid, eds., pp. 14, Plenum Press, New York., 1973.

    Google Scholar 

  • Jankovic B.D., The immune microenvironment is a multisystem, Immunol.Lett., 1: 145, 1979.

    Google Scholar 

  • Jankovi6, B.D., From immunoneurology to immunopsychiatry: neuromodulating activity of antibrain antibodies, Int. Rev. Neurobiol., 26: 249–314, 1985.

    Google Scholar 

  • Jankovic, B.D., and Isakovic, K. Neuro-endocrine correlates of immune response. I. Effects of brain lesions on antibody production, Arthus reactivity and delayed hypersensitivity in the rat, Int. Arch. Allergy Appl. Immunol., 45: 360, 1973.

    Google Scholar 

  • Jankovic, B.D., Isakovic, K. and Horvat, J. Effect of a lipid fraction from rat thymus on delayed hypersensitivity reactions of neonatally. ~thymectomized rats, Nature, 208: 356, 1965.

    PubMed  CAS  Google Scholar 

  • Jankovic, B.D., Isakovid, K. and Kneevic, Z. Ontogeny of the immuno-neuro-endocrine relationship. Changes in lymphoid tissues of chick embryos surgically decapitated at 33–38 hours of incubation, Develop.Comp. Immunol., 2: 479, 1978.

    Google Scholar 

  • Jankovic, B.D., Isakovic, K. and Knezevié, Z. Ontogeny of the immuno-neuro-endocrine relationship. Early thymectomy of the chick embryo, Immunol. Lett., 1: 7, 1979.

    Google Scholar 

  • Jankovic, B.D., Isakovié, K. Markovic, B.M. and Rajcevie, M. Immunological capacity of the chicken embryo. U. Humoral immune responses in embryos and young chickens bursectomized and sham-bursectomized at 52–64 h of incubation, Immunology, 32: 689, 1977.

    PubMed  CAS  Google Scholar 

  • Jankovic, B.D., Isakovié, K., Mieic, M., and Kneevic, Z. Thymus-bursa-hypophysis interactions in the developing chick embryo,in, Aspects of Developmental and Comparative Immunology I. J. B. Solomon, ed., pp 529–532, Pergamon Press, Oxford, 1981a.

    Google Scholar 

  • Jankovic, B.D., Isakovic, K., Micic’, M., and Knezevic, Z., The embryonic lympho-neuro-endocrine relationship, Clin. Immunol Immunopathol., 18: 108, 1981b.

    CAS  Google Scholar 

  • Jankovi6, B.D., Isakovid, K. and Mi6ic, M. The thymushypophysis interaction in the developing chick embryo. Thymic epithelial cells in hypopohysectomized embryos, in In Vivo Immunology, P. Nieuwenhuis, A.A. van den Broek and G. Hanna, Jr., eds., pp. 343–348, Plenum Press, N.Y., 1982.

    Google Scholar 

  • Jankovic, B.D., Isakovic, K. and Petrovie, S. Effect ofpinealectomy on immune reactions in the rat, Immunology, 18: 1, 1970

    Google Scholar 

  • Jankovic, B.D., Isakovic, K. and Petrovie, S. Effect ofpinealectomy on immune reactions in the rat, Immunology, 18: 1, 1970.

    Google Scholar 

  • Jankovic’ B.D., and Igvaneski, M. Experimental allergic encephalomyelitis in thymectomized, bursectomized and normal chickens, Int. Arch. Allergy Appl. Immunol., 23: 188, 1963.

    PubMed  CAS  Google Scholar 

  • Jânkovic, B.D., Jankovic, D.Lj. and Savovski, Lj. Effect of early epiphysectomy on the immune system of the chick embryo, Proc., First Int. Workshop on NIM, Bethesda, Md., November, 1984 in press, 1985.

    Google Scholar 

  • Jankovic, B.D., Jovanova, K. and Markovic, B.M. Effect of hypothalamic stimulation on the immune reactions in the rat, Period. Biol., 81: 211, 1979.

    Google Scholar 

  • Jankovic, B.D., Mi6id, M., Jankovic, D. Lj. and Isakovic, K. The brain-thymus-hypophysis interconnection during embryogenesis, Immunobiology, 165: 285, 1983.

    Google Scholar 

  • Jânkovic, B.D., Nesic, K. and Markovic, B.M. Neuroimmunomodulation: electrical stimulations of the hypothalamus and cortex potentiate the immune response, Neurosci. Lett., 14: S180, 1983a.

    Google Scholar 

  • Johnson, H.M., Smith, E.M., Torres, B.A. and Blalock, J.E. Regulation of the in vitro antibody response by neuroendocrine hormones, Proc. Nat. Acad. Sci USA, 79: 4171, 1982.

    PubMed  CAS  Google Scholar 

  • Kanematsu, S., and Mikami, S.I. Mects of hypothalamicirions on protein-bound Iodine and thyroidal I uptake in the chicken, Gen. Comp. Endocrinol., 14: 25, 1970.

    PubMed  CAS  Google Scholar 

  • Kappers, J.A., The development, topographical relations and innervation of the epiphysis cerebri in the albino rat, Z. Zellforsch., 52: 163, 1960.

    PubMed  CAS  Google Scholar 

  • Kappers, J.A., The mammalian pineal gland, a survey, Acta Neurochirurgica, 34: 109, 1976.

    PubMed  CAS  Google Scholar 

  • Keller, S.E., Stein, M., Camerino, M.S., Schleifer, S.J., and Sherman, J. Suppression of lymphocyte stimulation by anterior hypothalamic lesions in the guinea pig, Cell. Immunol, 52: 334, 1980.

    PubMed  CAS  Google Scholar 

  • Khai, L.M., Kovalenkova, M.V. Korneva, E.A., and Seranova, A.E., Further study on the role of the hypothalamic region in the regulation of immunogenesis, Zh. Mikrobiol. Epidemiol. Immunobiol., 41: 7, 1964.

    Google Scholar 

  • Kiss, F., Topographic relationship between the nerve plexuses and lymph nodes of the abdomen, Arch. Surgery, 21: 405, 1980.

    Google Scholar 

  • Klimenko, V.M., The study of some neuronal mechanisms of hypothalamic regulation of immune reactions in rabbits, Avtoref. Kand. diss. Inst. for Exper. Med. Leningrad (Russian), 1972.

    Google Scholar 

  • Knoche, H., Zur feineren Innervation des Thymus von Menschen, Z.Zellforsch., 41: 556, 1955.

    PubMed  CAS  Google Scholar 

  • Kopeloff, L.M., Barrera, S.E. and Kopeloff, N. Recurrent convulsive seizures in animals produced by immunologic and chemical means, Am.J. Psychiat., 98: 881, 1942.

    CAS  Google Scholar 

  • Korneva, E.A., and Khai, L.M. Role of the sympatho-adrenal system in the control of immunogenesis, Fiziol. Zh.SSSR, 47: 1298 (in Russian), 1961.

    Google Scholar 

  • Korneva, E.A. and Khai, L.M. Effect of destruction of areas within the hypothalamic region on the process of immunogenesis, Fiziologicheskii Zh. SSSR. 49(1):42 (in Russian), (English translation in Fed. Proc. Translations Suppl. 23 (1): T88, 1964.

    Google Scholar 

  • Korneva, E.A., and Khai, L.M. Effect of stimulation of various structures of the mesencephalon on the course of immunological reactions, Fiziol. Zh. SSSR I.M. Sechenova, 53: 42 (in Russian), 1967.

    Google Scholar 

  • Korneva, E.A., and Klimenko, V.M., Neuronale hypothalamusakivitat and homoostatische reactionen, Ergeb. exp. Med., 23: 373–382, 1976.

    CAS  Google Scholar 

  • Kostowiecki, M., Untersuchungen über Nervenendigungen in den Thymus menschlicher Feten., Vorl. Mitteil. Anat. Anza Bd., 80: 231, 1934.

    Google Scholar 

  • Kostowiecki, M., Uber die Nervenfasern und Nervenendigung in der Thymus wahrend der Fetalperiode, Zool. Pol., 3: 23, 1938.

    Google Scholar 

  • Kozlov, V.A., Anaphylaxis and the vegetative nervous system, Meditzina, Moscow, 1973.

    Google Scholar 

  • Krall, J.F., Connelly, M. and Tuck, M.L. In vitro desensitization of human lymphocytes by epinephrine, Biochem. Pharmacol., 31:117, 1982.

    Google Scholar 

  • Krieger, D.T. and Liotta, A.S., Pituitary hormones in brain:where, how and why? Science, 205: 366, 1979.

    PubMed  CAS  Google Scholar 

  • Kudoh, G., Hoshi, K. and Murakami,T. Fluorescence microscopic and enzyme histochemical studies of the innervation of the human spleen, Arch. Histol. Jap., 42 (2): 169–180, 1979.

    CAS  Google Scholar 

  • Kuntz, A. and Richins, C.A. Innervation of the bone marrow, J. Comp. Neurol., 83: 213–222, 1945.

    CAS  Google Scholar 

  • Lambert, P.L., Harrell, E.H., and Achterberg,J. Medial hypothalamic stimulation decreases the phagocytic activity of the reticuloendothelial system, Physiol. Psychol, 9: 193, 1981.

    Google Scholar 

  • Lane, M.A., and Strom, T.B. The muscarinic cholinergic receptor: the effect of T cell activation, Fed. Proc., 37: 1788, 1978.

    Google Scholar 

  • Lapin, V., Influence of simultaneous pinealectomy and thymectomy on growth and formation of the Yoshida sarcoma in rats, Exp. Pathol., 9: 108, 1974.

    CAS  Google Scholar 

  • Le Fur, G., Phan, T. Canton, T., Tur, C. and Uzan, A. Evidence for a coupling between doipaminergic receptors and phospholipid methylation in mouse Blymphocytes, Life Sci., 29: 2737, 1981.

    Google Scholar 

  • Le Fur, G., Phan, T. and Uzan, A. Identification of stereospecific (3H) spiroperidol binding sites in mammalian lymphocytes, Life Sci., 26: 1139, 1980.

    PubMed  Google Scholar 

  • Leeson, C.R., and Leeson, T.S., in Histology, C.R. Leeson and T.S. Leeson, eds., p. 475, W.B. Saunders, Philadelphia, 1976.

    Google Scholar 

  • Leger, J., and Masson, G. Factors influencing an anaphylactic reaction in the rat, Fed. Proc., 6: 150, 1947.

    PubMed  CAS  Google Scholar 

  • Lentz, H., Die Nervencersorgung der Kanichen-Milz, Z.Zellforsch., 37: 494, 1952.

    Google Scholar 

  • Luckey, T.D., Thymic Hormones, Univ. Park Press, Baltimore, 1973.

    Google Scholar 

  • Luparello, T.J., Stein, M. and Park, C.D. Effect of hypothalamic lesions on rat anaphylaxis, Am. J. Physiol., 207: 911, 1964.

    PubMed  CAS  Google Scholar 

  • MacManus, J.P. Whitfield, J.F. and Youdale, T., Stimulation by epinephrine of adenylcyclase activity, cyclic AMP formation, DNA synthesis and cell proliferation in populatiions of rat thymic lymphocytes, J. Cell Comp. Physiol., 77: 103, 1971.

    CAS  Google Scholar 

  • Macris, N.T., Schiavi, R.C. Camerino, M.S. and Stein, M. Effect of hypothalamic lesions on immune processes in the guinea pig, Am.J. Physiol., 219: 1209, 1970.

    Google Scholar 

  • Macris, N.T., Schiavi, R.C., Camerino, M.S. and Stein, M. Effect of hypothalamic lesions on passive anaphylaxis in the guinea pig, Am. J. Physiol., 222: 1054, 1972.

    PubMed  CAS  Google Scholar 

  • Maestroni, G.J.M. and Pierpaoli, W., Pharmacological control of the hormonally mediated immune response, in Psychoneuroimmunology, pp. 405–428, R. Ader, Ed. Academic press, New York, 1981.

    Google Scholar 

  • Mangilli, G., Motta, M. and Martini, L. Control of adrenocorticotropic hormone secretion, in Neuroendocrinology „ L. Martini and W.F. Ganong, eds. pp. 298–360, Academic Press, N.Y., 1966.

    Google Scholar 

  • Markesbery, W.R., Cross, R.J., Roszman, T.L. and Brooks, W.H. Aging changes in Neuroimmunomodulation in the Fischer 344 Rat, Proc. First Int. Workshop on NIM, Bethesda, Md. November 1984, in press, 1985.

    Google Scholar 

  • Maslinski, C., and Karszewski, W. The protective influence of brain stimulation by electric currents on histamine shock in guinea pigs, Bull. Acad. Pol. Sci.l, 5: 57, 1957.

    Google Scholar 

  • MaslixIski, W., Grabszewska, E. and Ryzewski, J., Acetylcholine receptors on rat lymphocytes. Biochim. Biophys. Acta, 633: 269, 1980.

    Google Scholar 

  • Mathews, P.M., Froelich, C.J., Sibbitt, W. L., Jr. and Bankhurst, A. D. Enhancement of natural cytotoxicity by beta-endorphin, J. Immunol., 130: 1658, 1983.

    PubMed  CAS  Google Scholar 

  • Miéie, M., Jankovic, D. Lj., Isakovie, K. and Jankovic, B.D. Forebrain and hypophysis affect development of the bursa of Fabricius in the chick embryo, Period. Biol., 85 (Suppl 3): 9, 1983.

    Google Scholar 

  • Miles, K., Quintans, J., Chelmicka-Schorr, E. and Arnason, B.G.W. The sympathetic nervous system modulates antibody response to thymus-independent antigens, J. Neuroimmunol., 1: 101, 1981.

    PubMed  CAS  Google Scholar 

  • Miller, G.C., Murgo, A.J. and Plotnikoff, N.P. EnkephalinsEnhancement of active T-cell rosettes from lymphoma patients, Clin. Immunol. Immunopathol., 26: 446, 1983.

    CAS  Google Scholar 

  • Miller, G.C., Murgo, A.J. and Plotnikoff, N.P. EnkephalinsEnhancement of active T-cell rosettes from normal volunteers, Clin. Immunol. Immunopathol., 31: 132, 1984.

    Google Scholar 

  • Miller, M., and McCuskey, R. Innervation of bone marrow in the rabbit., Scand. J. Haemat., 10: 17, 1973.

    Google Scholar 

  • Mitrova E. and Mayer, V. Phenotiatine-induced alterations of immune response in experimental tick-borne encephalitis: morphological model analysis of events, Acta. Virol., 20: 479, 1976.

    PubMed  CAS  Google Scholar 

  • Morgane, P.J., Panksepp, J. Editors. Handbook of the Hypothalamus. Vol I. Anatomy, Dekker, N.Y., 1979.

    Google Scholar 

  • Munck, A., Young, D.A., Mosher, K.M. and Wira, C.R., Specific metabolic and physiocochemical interactions of glucocorticosteroids with rat thymus cells, in Hormones in Development, pp. 191–201, M. Hamburgh and E.J.W. Barrington, Eds., Appleton Century Crofts, New York, 1971.

    Google Scholar 

  • Nauta, W.J.H., and Haymaker, W. Hypothalamic nuclei and fiber connections, in: The Hypothalamus, pp. 139209, W. Haymaker, E. Anderson and W.J.H. Nauta, Eds., Thomas, Springfield, 1969.

    Google Scholar 

  • Nilzen, A., The influence of the thyroid gland on hypersensitivity reactions in animals. I., Acta. Allerg., 7: 231, 1954.

    CAS  Google Scholar 

  • Noerthen, K., Die Nervenversorgung der Katzenmilz., Morph. Jb., 95: 55, 1955.

    Google Scholar 

  • Ottolenghi, D., Sur les nerfs de la moelle des os, Arch. Ital. Biol, 37: 73–80, 1902.

    Google Scholar 

  • Paunovic, V.R., Petrovic, S. and Jankovic, B.D. Influence of early postnatal hypothalamic lesions on the immune response in adult rats, Period. Biol.,(Suppl.) 78: 50, 1976.

    Google Scholar 

  • Payan, D.G., Brewster, D.R. and Goetzl, E.J. Specific stimulation of human T- lymphocytes by substance P, J. Immunol., 131: 1613, 1983.

    PubMed  CAS  Google Scholar 

  • Payan, D.G., and Goetzl, E.J. Neuropeptide regulation of immediate and delayed hypersensitivity, in Neuroimmunomodulation II, ed. N.H. Spector et al. Gordon and Breach, N.Y., in press, 1986.

    Google Scholar 

  • Pearse, A.G.E., and Takor, T.T. Embryology of the diffuse neuroendocrine system and its relationship to the common peptides, Fed. Proc., 38: 2288, 1979.

    PubMed  CAS  Google Scholar 

  • Petrovski, I.N., Effect of stimulation of brain regions on agglutinin titers, Zh. Mikrobiol. Epidemiol. Immunobiol., 32: 103 (in Russian), 1961.

    Google Scholar 

  • Pierpaoli, W., Fabris, N. and Sorkin, E. Developmental hormones and immunological maturation, in Hormones and the Immune Response, G. E. W. Wolstenholme and J. Knight, eds. pp. 126–143, Churchill, London, 1970.

    Google Scholar 

  • Pines, L., and Majman, R. The innervation of the thymus, J. Nerv. Dis., 69: 361, 1929.

    Google Scholar 

  • Plezitiy, K.D., Magaeava, S.V. and Evseev, V.A. Effect of lesions and stimulations of dorsal hippocampus on Arthus reaction, in Physiology of Immune Homeostasis,II Symposium, pp. 34–35, Rostov-on-Don, (in Russian), 1977.

    Google Scholar 

  • Plotnikoff, N.P., and Miller, G.C. Enkephalins as immunomodulators, Int.J. Immunopharmacol., 5: 437, 1983.

    PubMed  CAS  Google Scholar 

  • Polyak, A.I., Rumbeshet, L.M. and Sinichkin, A.A. Antibody synthesis following electrocoagulation of the posterior hypothalamic nucleus, Zh. Mikrobiol. Epidemiol. Immunobiol., 46: 52 (in Russian), 1969.

    Google Scholar 

  • Quay, W.B., Histological structure and cytology of the pineal organ in birds and mammals, Prog. Brain Res., 10: 49, 1965.

    PubMed  CAS  Google Scholar 

  • Reilly, F.D., McCluskey, P.A., Miller, M.L., McCluskey, R. S., and Meineke,H.A. Innervation of the periarteriolar lymphatic sheath of the spleen, Tissue & Cell, 11: 121, 1979.

    Google Scholar 

  • Reilly, F. D., McCluskey, R.S. and Meineke, H.A. Studies of the hematopoietic microenvironment. VIII. Adrenergic and cholinergic innervation of the murine spleen, Anat. Rec., 185: 109, 1976.

    Google Scholar 

  • Relia, W., and Lapin, V. Immunocompetence of pinealectomized and simultaneously pinealectomized and thymectomized rats, Oncology, 33: 3, 1976.

    Google Scholar 

  • Renaud, L.P. Neurophysiological organization of the endocrine hypothalamus, in The Hypothalamus, pp. 269–301, S. Reichlin, R.J. Baldessarini and J.B. Martin, Eds., Raven Press, New York, 1978.

    Google Scholar 

  • Renoux, G. Differentiation of T-cell lineage by sodium diethyldithiocarbamate (DTC). Influence of the neocortex, in New Trends in Human Immunology and Cancer Immunotherapy, pp. 966–994, Serrou, B. and Rosenfeld, C., Eds, Doin, Paris, 1980.

    Google Scholar 

  • Renoux, G., Biziére, K., Renoux, M. and Guillaumin, J.M., The production of T-cell inducing factors in mice is controlled by the brain neocortex. Scand. J. Immunol., 17: 45, 1983.

    PubMed  CAS  Google Scholar 

  • Renoux, G., Bizière, K., and Renoux, M. Imuthiol reveals brain cortical asymmetry in the regulation of T-cell activities, Proc., First Int. Workshop on NIM, Bethesda, Md. November, 1984, in press, 1985.

    Google Scholar 

  • Richman, D.P., and Arnason, B.G.W. Nicotinic acetylcholine receptor: Evidence for a functionally distinct receptor on human lymphocytes, Proc. Natl. Acad. Sci. USA, 76: 4632, 1979.

    CAS  Google Scholar 

  • Rimon, G., Hanski, E, Braun, S. and Levitzki, A., Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature, 276: 394, 1978.

    PubMed  CAS  Google Scholar 

  • Riegele, L., Uber die mikroskopische Innervation der Milz., Z. Zellforsch., 9: 511, 1929.

    Google Scholar 

  • Rodin, A.E., The growth and spread of Walker 256 carcinoma in pinealectomized rats, Cancer Res., 27: 1545, 1963.

    Google Scholar 

  • Romanoff, A.L., The Avian Embryo, MacMillan, New York, 1960.

    Google Scholar 

  • Romanoff, A.L. and Romanoff, A.J. Pathogenesis of the Avian Embryo, Wiley-Interscience, New York, 1972.

    Google Scholar 

  • Romieu, M. and Jullien, G. Sur l’existence d’une formation lymphoid dans l’epiphyse de Gallinaces, C.R. Soc. Biol., 136: 626, 1942.

    Google Scholar 

  • Rossi, F., La distribuzione di fibre nervose nell ‘uomo e particolarmente nel midollo osseo, studieta con metodi specifici delle neurofibrille., Boll. Soc. Ital. Biol. Sper., 3: 863, 1929.

    Google Scholar 

  • Roszman, T.L., Cross, R.J. Brooks, W.H., and Markesbery, W.R. Hypothalamic-immune interactions. II. The effect of hypothalamic lesioins on the ability of adherent spleen cells to limit lymphocyte blastogenesis, Immunology, 45: 737, 1982.

    Google Scholar 

  • Ruf, K., and Steiner, F.A. Steroid-sensitive neurons in rat hypothalamus and mid-brain:identification by microelectrophoresis, Science, 156: 667–669, 1967.

    PubMed  CAS  Google Scholar 

  • Schiavi, R.C., Adams, J. and Stein, M. Effect of hypothalamic lesions on histamine toxicity in the guinea pig, Am. J. Physiol., 211: 1269, 1966.

    PubMed  CAS  Google Scholar 

  • Schiavi, R.C., Macris, N.T. Camerino, M.S. and Stein, M. Effect of hypothalamic lesions on immediate hypersensitivity, Am. J. Physiol., 228: 596, 1975.

    Google Scholar 

  • Schowing, J., Influence de l’excision du rhombencéphale et du mesencephale sur la morphogenese du crane chez l’embryon de Poulet, Compt. Rend. Acad. Sci., Paris, 248: 2391, 1959a.

    CAS  Google Scholar 

  • Schowing, J., Influence de l’excision du mesencéphale et du prosencephale sur la morphogenese du crane chez l’embryon du Poulet. Compt. Rend. Acad. Sci., Paris. -249: 170, 1959b.

    Google Scholar 

  • Schowing, J., Influence inducrice de l’encéphale embryonnaire sur le développement du crane chez le Poulet. I. Influence de l’excision des territoires nerveux anterieurs sur le dévelopment cranien. J. Embryol. Exp. Morph., 19: 9, 1968a.

    PubMed  CAS  Google Scholar 

  • Schowing, J., Influence inducrice de l’encéphale embryonnaire sur le development du crane chez le Poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et podterieur sur le development cranien. J. Embryol. Exp. Morphol., 19: 23, 1968b.

    PubMed  CAS  Google Scholar 

  • Schreiner, G.F., and Unanue, E.R. The modulation of spontaneous and anti-Ig-stimulated motility of lymphocytes by cyclic nucleotides and adrenergic and cholinergic agents, J.Immunol, 114: 802, 1975.

    PubMed  CAS  Google Scholar 

  • Schulster, D., and Levitzki, A. Cellular Receptors for Hormones and Neurotransmitters, John Wiley & Sons, Chichester, 1980.

    Google Scholar 

  • Serge’eva, V.E., Histotopography of catecholamines in the mammalian thymus., Bull. Exp. Biol. Med., 77: 456, (in Russian), 1974.

    Google Scholar 

  • Shapiro, H.M., and Strom, T.B. Electophysiology of T-lymphocyte cholinergic receptors, Proc. Nat. Acad. Sci. USA, 77: 4317, 1980.

    PubMed  CAS  Google Scholar 

  • Shavit, Y., Lewis, J.W. Terman, G.W., G.le, R.P., and Liebeskind, J.C., Opoid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity, Science, 223: 188, 1984.

    Google Scholar 

  • Shavlev, V.N., On the innervation of lymph nodes., Arkh. Anat. Giol. Embriol., 54(2): 96 (in Russian), 1968.

    Google Scholar 

  • Sherman, N.A., Smith, R.S. and Middleton, E. Jr. Effect of adrenergic compounds, aminophylline and hydrocortisone on in vitro immunoglobulin synthesis by normal human peripheral lymphocytes, J. Allergy Clin. Immunol., 52: 13, 1973.

    PubMed  CAS  Google Scholar 

  • Shiotani, Y., and Ban. T. Effect of long-term electrical stimulation of the hypothalamus on pituitary-target gland system in rabbits, Med. J. Osaka Univ., 20: 119, 1969.

    Google Scholar 

  • Singh, U., Millson, D.S. Smith, P.A., and Owen, J.J.T. Identification of beta-adrenoreceptors during thymocyte ontogeny in mice, Eur. J. Immunol., 9: 31, 1979.

    PubMed  CAS  Google Scholar 

  • Sjolander, A., and Strandberg, A. Ober die zur Thymusdrüse tretenden Nerven, Upsala, Lak forh Forkh., 20: 243, 1915.

    Google Scholar 

  • Smith, E., and Blalock, J.E. Lymphocyte production of neurally active pituitary hormone-like molecules, Proc., First Int. Workshop on NIM, in press, 1985.

    Google Scholar 

  • Smith, K.A., Crabtree, G.R., Kennedy, S.J. and Munck, A., Glucocorticoid receptors and glucocorticoid sensitivity of mitogen stimulated and unstimulated human lymphocytes, Nature, 267: 523, 1977.

    PubMed  CAS  Google Scholar 

  • Solov’ev V.N., On the sources of innervation of the thymus gland., Arkh. Anat. Gistol. Embriol., 51: 76–82 (in Russian), 1966.

    Google Scholar 

  • Spector, N.H. Can hypothalamaic lesions change circulating antibody responses to antigens? Current Problems in Experimental and Clinical Allergy (V.I. Pytskii, ed.),pp. 21–37, Moscow, ( Russian ), 1979.

    Google Scholar 

  • Spector, N.H. The. The “central state” of the hypothalamus in health and disease:old and new concepts. Physiology of the Hypothalamus, P, Morgane and J. Panksepp, eds., Dekker, N.Y., pp. 453–517, 1980.

    Google Scholar 

  • Spector, N.H., Anatomical and physiological connections between the central nervous and the immune systems (neuroimmunomodulation), in Immunoregulation, pp. 231–258, N. Fabris, E. Garaci, J. Hadden, and N.A. Mitchison, eds. Plenum Press, New York, 1983.

    Google Scholar 

  • Spector, N.H. Information explosions in an old-new research domain. in The Year in Immunology 1984–85, pp. 202207 J.M. Cruse and R.E. Lewis, Jr. eds. Karger Basel, 1985.

    Google Scholar 

  • Spector, N.H., Cannon, L.T. Diggs, C.L., Morrison, J.E., and Koob,G.F. Hypothalamic lesions: effects on immunological responses, Physiologist, 18: 401, 1975.

    Google Scholar 

  • Spector, N.H., Koob, G.F. and Baron,S. Hypothalamic influence upon interferon and antibody responses to Newcastle Disease. Virus infection: preliminary report. Proc. Internatl. Union Physiol. Sci. 13:711 (Abstr.)

    Google Scholar 

  • Spector, N.H. and E. Korneva Neurophysiology and Neuroimmunomodulation in Psychoneuroimmunology R. Ader, ed., Academic Press, N.Y., pp. 449–473, 1981.

    Google Scholar 

  • Spector, N.H., Martin, L.K., Diggs, C.L. and Koob, G.F. Hypothalamic lesions: effects upon malaria and antibody production in rats. Proceedings of the 26th International Congress, New Delhi, India. Proc. Inter. Union Physiol. Sci (Abstr. ), 1974.

    Google Scholar 

  • Speplewski, C. and Vogel, W. Changes in brain serotonin affect leucocytes, T-cells and natural killer cell activity in rats, in preparation for press, 1985.

    Google Scholar 

  • Speranskii, A.D., A Basis for the Theory of Medicine (first Russian Ed.) (English translation, International Publisher, N.Y. 1943 ), 1934.

    Google Scholar 

  • Spetien, H., Kunert-Radek, J. Karasek, E., and Pawlikowski, M. Dopamine increases cyclic AMP concentration in the rat spleen lymphocytes in vitro, Biochem.Biophys. Res. Commun., 10: 1057, 1981.

    Google Scholar 

  • Spiroff, B.E.N., Embryonic and post-embryonic development of the pineal body of the domestic fowl, Am. J. Anat., 103: 375, 1958.

    PubMed  CAS  Google Scholar 

  • Stalberg, H., Effects of extirpation of the epiphysis cerebri in 6-day chick embryos, Dissertation, Olaf Norlis Forlag, Oslo.,1965.

    Google Scholar 

  • Stimson, W.H., and McCruden, A.B. Androgen binding cytosol receptors in the rat thymus: physicochemical properties, specificity, and localization, Thymus, 3: 105, 1981.

    PubMed  Google Scholar 

  • Strom, T.B., Diesseroth, A. Morganroth, J. C.rpenter, C.B., and Merrill, J.P. Alteration of the cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase, Proc.Natl. Acad. Sci. USA, 69: 2995, 1972.

    Google Scholar 

  • Strom, T.B., Lundin, A.P. and Carpenter, C.B. The role of cyclic nucleotides in lymphocyte activation and function, Prog. Clin. Immunol., 3: 115, 1977.

    PubMed  CAS  Google Scholar 

  • Strom, T.B., Sytkowski, A.J., Carptenter, C.B., and Merrill, J.P., Cholinergic augmentation of lymphocyte-medicated cytotoxicity, A study of the cholinergic receptor of cytotoxic T-lymphocytes. Proc. Natl. Acad. Sci, USA, 71: 1330, 1974.

    PubMed  CAS  Google Scholar 

  • Szentivanyi, A., and Filipp, G. Anaphylaxis and the nervous system, II., Ann. Allergy, 16: 143, 1958.

    PubMed  CAS  Google Scholar 

  • Szentivanyi, A., and Szekely, J. Anaphylaxis and the nervous system, IV., Ann. Allergy, 16: 389, 1958.

    PubMed  CAS  Google Scholar 

  • Takeyama, K., Morphologische Beobachtungen über diesich im Knochenmark verteilenden, peripheren Nerven, Mitt. med. Akad. Kioto, 16: 895, 1936.

    Google Scholar 

  • Tcheng, K.T., Fibres nerveuses momifieés dans les corpuscules de Hassall chez le chat, Bull. Histol. Appl., 27: 100, 1950.

    Google Scholar 

  • Terni, T., Les cellules myoides du thymus des sauropsides et leur innervation., Bull. Ass. Anat., Paris, 3: 448, 1928.

    Google Scholar 

  • Terni, T., Ricerche istologiche sull innervazione del timo dei Sauropsidi, Z. Zellforsch, 9: 377, 1929.

    Google Scholar 

  • Terni, T., L’innervazione del timo, Arch.Zool. Ital., 16: 714, 1931.

    Google Scholar 

  • Terni, T., and Muratori, G. Sulla innervazione del timo e del corporvultim onbranchiale dopo estirpazione del ganglio nodoso del vago, Monit. Zool. Ital., 43: Suppl., 85, 1933.

    Google Scholar 

  • Thakur, P.K., and Manchanda, S.K. Hypothalamic influence on the activity of reticuloendothelial system in cat, Indian J.Physiol. Pharmacol., 13: 11, 1969.

    Google Scholar 

  • Thieblot, L., Structure and function of the epiphysis cerebri, Prog. Brain Res., 10: 479, 1965.

    PubMed  CAS  Google Scholar 

  • Thrasher, S.G., Bernardis, L.L. and Cohen,S. The immune response in hypothalamic-lesioned and hypophysectomized rats, Int.Arch. Allergy Appl. Immunol., 41: 813, 1971.

    PubMed  CAS  Google Scholar 

  • Tischendorf, F., Beobachtungen über die feinere Innervation der Milz, Kölner Univ. Verlag, Kôln, 1948.

    Google Scholar 

  • Tonkoff, W., Zur Kenntnis der Neervender Lymphdrüsen, Anat. Anzeiger, 16: 456, 1899.

    Google Scholar 

  • Triggle, D.J., Neurotransmitter-Receptor Interactions, Academic Press, London, 1971.

    Google Scholar 

  • Tyrey, L., and Nalbandov. A.V. Influence of anterior hypothalamic lesions on circulating antibody titers in the rat, Am. J. Physiol., 222: 179, 1972.

    PubMed  CAS  Google Scholar 

  • Uede, T., Ishii, Y. Matsuura, A. Shimogawara, I. and Kikuchi, K. Immunohistochemical study of lymphocytes in rat pineal gland: selective accumulation of T-lymphocytes, Anat. Rec., 199: 239, 1981.

    Google Scholar 

  • Variot, P., and Remy, C. Sur les nerfs de la moelle des os., J. Anat. Physiol., 6: 273, 1880.

    Google Scholar 

  • Volik, V.Ia, Development of the neural apparatus of inguinal lymph nodes in man, Arkh. Anat. Gistol. Embriol., 45:(5): 34 (in Russian), 1965.

    Google Scholar 

  • Warejcka, D.J., and Levy, N.L. Central nervous system (CNS) control of the immune response: effect of hypothalamic lesions on PHA responsiveness in rats, Fed. Proc., 39: 914, 1980.

    Google Scholar 

  • Weber, R.J., and Pert, C.B. Opiatergic modulation of the immune system, in Central and Peripheral Endorphins: Basic and Clinical Aspects, E.E. Muller and A.R. Genazzani,eds, pp. 35–42, Raven Press, New York, 1984.

    Google Scholar 

  • Weibel, E.R., Stereological principles for morphometry in electron microscopic cytology, Int. Rev. Cytol., 26: 235, 1969.

    PubMed  CAS  Google Scholar 

  • Wertman, E., Ovadia, H., Feldman, S., and Abramsky, O. Prevention of experimental autoimmune disease by anterior hypothalamus lesion in rat, Proceedings First Int. Workshop on NIM, Bethesda, Maryland, November 1984, in press, 1985.

    Google Scholar 

  • Williams, J.M., and Felten, D.L. Sympathetic innervation of murine thymus and spleen: A comparative histofluorescence study, Anat. Rec., 199: 531, 1981.

    PubMed  CAS  Google Scholar 

  • Williams J.M., Peterson, R.G. Shea, P.A., Schmedtje, J.F., Bauer, D.C. and Felten, D.L. Sympathetic innervation of murine thymus and spleen: Evidence for a functional link between the nervous and immune systems., Brain Res. Bull., 6: 83, 1981.

    PubMed  CAS  Google Scholar 

  • Williams, L.T., Snyderman, R. and Lefkowitz, R.J. Identification of beta-adrenergic receptors in human lymphocytes by (-) [3H) alprenolol binding, J. Clin. Invest., 57: 49, 1976.

    Google Scholar 

  • Wingstrand, K.O., The Structure and Development of the Avian Pituitary, Gleerup, Lund, 1951.

    Google Scholar 

  • Wolff, E., Les bases de la teratogenese expérimentale des vertébres amniotes d’apAs les resultats des methodes directes, Arch.Anat. Histol.Embryol. 22: 1, 1936.

    Google Scholar 

  • Wybran, J., Appelboom, T. Famaly, J.P. and Govaerts, A. Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T-lymphocytes, J. Immunol., 123: 1068, 1979.

    PubMed  CAS  Google Scholar 

  • Yu, D.T.Y., and Clements, P.J. Human lymphocyte subpopulations: effect of epinephrine, Clin. Exp. Immunol., 25: 472, 1976.

    PubMed  CAS  Google Scholar 

  • Zetterstrom, B.E., HAfelt, M.T. Norbert, K.A., and Olsson,P. Possibilities of a direct adrenergic influence on blood elements of the dog spleen, Acta. Chir. Scand., 139: 17, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jankovic, B.D., Spector, N.H. (1986). Effects on the Immune System of Lesioning and Stimulation of the Nervous System: Neuroimmunomodulation. In: Plotnikoff, N.P., Faith, R.E., Murgo, A.J., Good, R.A. (eds) Enkephalins and Endorphins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0557-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0557-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0559-8

  • Online ISBN: 978-1-4899-0557-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics