Involvement of Non-Opiate Peptides in Psychoneuroimmunological Modulations

  • V. Kluša
  • R. Muceniece
  • Š. Svirskis
  • E. Kukaine
  • M. Ratkeviča
  • G. Rosenthal
  • G. Afanasyeva


At present, several teams of investigators have provided evidence that endogenous opiate peptides play an important role in interactions between the nervous, endocrine and immune systems, their dysfunctions being intimately associated with stress (Arrigo-Reina and Ferri, 1980). Hence, the rapid growth of psychoneuroimmunology, a new field of neurobiology, largely relies on investigation of opiatergic modulations of these systems. Non-opiate peptides, however, are equally involved in regulating the integrity of biochemical and physiological processes responsible for homeostasis.


Mast Cell Opiate Receptor Opiate Peptide Mast Cell Histamine Release Nmol Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, R. A., Rastogi, R. B., and Singhal, R. L., 1976, Changes in brain catecholamines and spontaneous locomotor activity in response to thyrotropin releasing activity, Res. Comm. Chem. Pathol. Pharmacol., 15: 743–752.Google Scholar
  2. Ashmarin, I. P., 1983, Neuropeptide complexes, in: Rational Search for New Neurotropic Agents, Zinâtne, Riga.Google Scholar
  3. Ashmarin, I. P., Antonova, L. V., Burbaeva, G. Sh., and Kamensky, A. A., 1981, On the possibility of native ACTH4–10 being present in the rat, in: Abstr. 4th USSR Symp. on Drug Design, Riga.Google Scholar
  4. Arrigo-Reina, R., and Ferri, S., 1980, Evidence of an involvement of the opioid peptidergic system in the reaction to stressful conditions, Eur. J. Pharmacol., 64: 885–888.CrossRefGoogle Scholar
  5. Berntson, G. G., and Berson, B. S., 1980, Antinociceptive effects of intraventricular or systemic administration of vasopressin in the rat, Life Sci., 26: 255–259.Google Scholar
  6. Bhargava, H. N., 1982, Dissociation of tolerance to the analgesic and hypothermic effects of morphine using thyrotropin releasing hormone, Life Sci., 29: 1015–1020.CrossRefGoogle Scholar
  7. Block, L. H., Locher, R., and Tenschest, W., 1981, 125J-8-L-Arginine vasopressir, binding to human mononuclear phagocytes, J. Clin. Investig., 68: 374–381.PubMedCrossRefGoogle Scholar
  8. Bulaev, V. M., 1982, Opiate receptors and their ligands, in: Advances in Science and Technology, Series: Pharmacology. Chemotherapeutic Drugs. “Opioid Peptides and Their Receptors”, I. P. Ashmarin, Ed., Moscow.Google Scholar
  9. Bukharin, O. V., Vasiliev, N. V., and Volodina, E. P., 1982, Oxytocin and vasopressin - regulators of immune homeostasis, in: Abstr. 3rd USSR Symp. on Regulation of Immune Homeostasis, Leningrad, 129–130.Google Scholar
  10. Chipens, G., 1971, Similarity of signature carriers in some physiologically active peptides, in: Chemistry and Biology of Peptides, Zinâtne, Riga.Google Scholar
  11. Chipens, G., Blüger, A., Wechsler, H., Timoshenko, Zh., Baumanis, E., Iriste, A., Daija, D., Mergina, G., Poluektova, L., Veretennikova, N., 1982, Comparative study of immunobiochemical effect of tuftsin and rigin, in: Abstr. USSR Symp. on Bioorganic Chemistry and Drug Design, Riga.Google Scholar
  12. Chipens, G. I., Veretennikova, N. I., Zâlitis, G. M., Atare, Z. A., Afanasyeva, G. A., and Kukaine, E. M., 1980, New IgG fragments and their analogus possessing immunostimulating and immunoinhibitory activity, in: Abstr. 3rd Intern. Colloquium on Physico-Chemical Information Transfer of Reproduction and Ageing, Varna, Bulgaria, 22–23 Sept.:20.Google Scholar
  13. De Wied, D., 1979, Pituitary and brain peptides and behaviour, in: Brain Peptides: a New Endocrinology, A. M. Gotto, ed., Elsevier/North Holland Biomed. Press, Amsterdam.Google Scholar
  14. Deschodt-Lanckman, M., and Strosberg, A. D., 1983, In vitro degradation of the C-terminal octapeptide of cholecystokinin by enkephalinase, Febs Let., 152: 109–183.CrossRefGoogle Scholar
  15. DiAugustine, R. P., Lazarus, L. H., Jahnke, G., Khan. M. N., Erisman, M. D., and Linnoilar, R. I., 1980, Corticotropin/ß-endorphin immunoreactivity in rat mast cells. Peptide or protease? Life Sci., 27: 2663–2668.PubMedCrossRefGoogle Scholar
  16. Dolzhenko, A. T., and Komissarov, I. V., 1982, A comparative study of the modulating effect of thyroliberin and melanostatin on neuromediator release by rat brain slices, in: Abstr. USSR Symp. on Bioorganic Chemistry and Drug Design Riga.Google Scholar
  17. Donoso, A. O., and Alvarez, E. O., 1984, Brain histamine as neuroendocrine transmitter, TIPS, March: 98–100.Google Scholar
  18. Faith, R. E., Plotnikoff N. P., Murgo, A. J. (In press), Effects of opiates and enkephalins-endorphins on immune functions.Google Scholar
  19. Feldberg, W., and Paton, W. D. M., 1949, Release of histamine by morphine alkaloids, J. Physiol. (Loud.), 111: 19P.Google Scholar
  20. Greengard, P., 1979, Cyclic nucleotides, phosphorylated proteins, and the nervous system, Federat. Proc., 39: 2208–2217.Google Scholar
  21. Haldar, J., Hofman, D. L., Nilaver, G., and Zimmerman, E. A., 1980, Oxytocin and vasopressin release by substance P injected into the cerebral ventricles of rats, in: Abstr. 9th Annu. Meet. Atlanta, Georgia, Nov. 2–6, 1979, Bethesda, Soc. Neurosci., 5: 447.Google Scholar
  22. Henderson, N. D., 1970, Behavioural reactions of Wistar rats to conditioned fear stimuli, novelty and noxious stimulation, J. Psychol., 75: 19–34.PubMedCrossRefGoogle Scholar
  23. Johnson, H. M., 1983, Neuroendocrine polypeptide hormone regulation of lymphokine production and lymphocyte function, Lymphokine Research, 2: 49–56.PubMedGoogle Scholar
  24. Johnson, H. M., Smith, E. M., Torres, B. A., and Blalock, J. E., 1982, Regulation of the in vitro antibody response by neuroendocrine hormones, Proc. Natl. Acad. Sci., 79 (13): 4171–4174.PubMedCrossRefGoogle Scholar
  25. Jörnvall, H.,Carlström, A.,Pettersson, T., Jacobsson, B., Persson, M., and Mutt, V., 1981, Structural homologies between prealbumin gastrointestinal prohormones and other proteins, Nature, 291: 261–263.PubMedCrossRefGoogle Scholar
  26. Kastin, A. J., Olson, R. D., Ehrensing, R. H., Berzas, M. C., Schally, A. V., and Coy, D. H., 1980, MIF-I differential actions as an opiate antagonists, Pharmacol. Biochem. Behay., 11: 721–723.CrossRefGoogle Scholar
  27. Kendler, K. S., Weitzman, R. E., and Fisher, D. A., 1978, The effect of pain on plasma arginine vasopressin concentration in man, Clin. Endocrinol., 8: 89–94.CrossRefGoogle Scholar
  28. Kluga, V., 1984, Peptides as Regulators of Brain Functions, Zinâtne, Riga.Google Scholar
  29. Kluga, V., Abissova, N., Kukaine, E., Afanasyeva, G., Misiga, I., Myshliakova, N., Muceniece, R., and Svirskis, S., 1981a, Possible functional relationship between neuro-, immun-and glucomodulating peptides: A hypothesis, in: Abstr. 4th USSR Symp. on Drug Design, Riga.Google Scholar
  30. Kluga, V., Abissova, N., Muceniece, R., Svirskis, S., Bienert, M., and Lipkowski, A., 1981b, Comparative study of substance P and its fragments: analgesic properties, effects on behaviour and monoaminergic processes, Byul. eksp. biol. i med., 12: 692–694.Google Scholar
  31. Kluga, V., Muceniece, R., and Svirskis, S., 1982, Fragments of peptide hormones as possible central regulation factors, in: Neuropharmacology of Peptides, A. V. Waldman, Ed., Moscow.Google Scholar
  32. Kluga, V., Praultte, G., Svirskis, S., Muceniece, R., Kukaine, E., and Abissova, N. A., 1984, Comparative study of the central effects of the immunopeptides tuftsin and rigin, LPSR Zin. Akad. véstis, 12: 103–109.Google Scholar
  33. Kozlovskaya, M., Kluga, V., and Bondarenko, N., 1982, A comparison of psycho-tropic and neurochemical effects of short peptides, in: Neurochemical aspects of psychotropic action, A. V. Waldman, Ed., Moscow.Google Scholar
  34. Kukaine, E., 1981, Effects of neuropeptides and neurotransmitters on the humoral immune system, in: Abstr. 4th USSR Symp. on Drug Design, Riga.Google Scholar
  35. Kukaine, E., Muceniece, R., and Kluga, V., 1982, Comparison of neuro-and immunomodulating properties of low-molecular neuropeptides, Byul. eksp. biol. i med., 8: 79–82.Google Scholar
  36. Kukaine, E., Rosenthal, G., and Kluga, V., 1984, Tuftsin and rigin–opiate or non-opiate peptides? in: Abstr. Conf. on Synthesis and Properties of Physiol. Active Agents, Vilnius, 70–71.Google Scholar
  37. Lin, T. M., 1972, Gastrointestinal actions of the C-terminal tripeptide of gastrin, Gastroenterology, 63: 922–923.Google Scholar
  38. Lolait, S. J., Lim, A. T. W., Toh, B. H., and Funder, J. M., 1984, Immunoreactive ß-endorphin in a subpopulation of mouse spleen macrophages, J. Clin. Invest., 73 (1): 277–280.PubMedCrossRefGoogle Scholar
  39. May, Ch. D., Lyman, M., Alberto, R., and Cheng, J., 1970, Procedures for immunochemical study of histamine release from leukocytes with small volume of blood, J. Allerg., 46: 12–20.PubMedCrossRefGoogle Scholar
  40. Miller, G. C., Murgo, A. J., and Plotnikoff, N. P., 1983, Enkephalins–enhancement of active T-cell rosettes from lymphoma patients, Clin. Immunol. Immunopathol., 26 (3): 446–451.CrossRefGoogle Scholar
  41. Najjar, V. A., and Nishioka, K., 1970, Tuftsin, a natural phagocytosis stimulatory peptide, Nature, 228: 672–673.PubMedCrossRefGoogle Scholar
  42. Nikitina, Z. S., Batuner, A. S., and Sytinsky, I. A., 1983, Activity of gamma-glutamine transferase in the brain following tuftsin administration, in: Abstr. 4th USSR Conf. on Biochemistry and Nervous System, Yerevan, 216–217.Google Scholar
  43. Oehme, P., Bienert, M., Hecht, K. B., and Bergman, J., 1981, Substance P. Ausgewählte Probleme der Chemie, Biochemie, Pharmacologie, Physiologie und Pathophysiologie, Berlin.Google Scholar
  44. Parviz, M. A., 1978, Psychopharmacology of morphinomimetic peptides in relation to schizophrenia, Gen. Pharmacol., 9: 221–222.CrossRefGoogle Scholar
  45. Porsolt, R. D., Bertin, A., and Jalfre, M., 1977, Behavioral despair in mice: a primary screening test for antidepressants, Arch. Intern. Pharmacodyn., 229: 327–336.Google Scholar
  46. Rehfeld, J. F., and Golterman, N. R., 1979, Immunochemical evidence of cholecystokinin tetrapeptides in hog brain, J. Neurochemistry, 32: 1339–1341.CrossRefGoogle Scholar
  47. Ribeiro, S. A., Corrade, A. P., and Graff, F. G., 1968, Analgesia induced by intraventricular administration of bradykinin in the rabbit, Acta Physiol. Latinoam., 18: 78–81.Google Scholar
  48. Rossie, S. S., and Miller, R. J., 1982, Regulation of mast cell histamine release by neurotensin, Life Sci., 31: 509–516.PubMedCrossRefGoogle Scholar
  49. Said, S. J., 1984, Vasoactive intestinal polypeptide (VIP): Current Status, Peptides, 5: 143–150.PubMedCrossRefGoogle Scholar
  50. Sewell, R. D. E., and Spencer, P. S. J., 1977, The role of biogenic agents in the actions of centrally-acting analgesics, in: Progress in Medicinal Chemistry, G. P. Ellis, G. B. West, Eds., Elsewier/North Holland Biomedical Press, Amsterdam.Google Scholar
  51. Sofina, Z. P., Lagova, N. D., and Kalashnikova, N. M., 1982, Hypothalamic peptide factors as potential antitumour agents, in: Abstr. USSR Symp. on Bioorgan. Chemistry and Drug Design, Riga, 53.Google Scholar
  52. Tagaki, H., Shiomi, H., Ueda, H., and Amano, H., 1979, A novel analgesic dipeptide from bovine brain is a possible Met-enkephalin releaser, Nature, 282: 410–413.CrossRefGoogle Scholar
  53. Vaught, J. C., Rothman, R. B., and Westfall, T. C., 1982, Mu and delta receptors: their role in analgesia and in differential effects of opioid peptides on analgesia, Life Sci., 30: 1443–1455.PubMedCrossRefGoogle Scholar
  54. Waksman, B. H., 1979, Adjuvants and immune regulation by lymphoid cells, Springer Seminar of Immunopathology, 2: 5–33.Google Scholar
  55. Walaszek, E. J., 1970, Effect of bradykinin on the central nervous system, in: Handbook of Experimental Pharmacology, v. 25, Bradykinin, Kallidin and Kallikrein, E. G. Erdös, Ed., Springer Verlag, Berlin-Heidelberg-New York.Google Scholar
  56. Waldman, A. W., 1982, Peptides as modulators of monoaminergic processes, in: Pharmacology of Neropeptides, A. V. Waldman, Ed., Moscow.Google Scholar
  57. Weber, R., and Pert, C., 1984, Opiatergic modulation of the immune system, in: Central and Peripheral Endorphins: Basic and Clinical Aspects, E. E. Müller, A. R. Genazzani, Eds., Raven Press, New York.Google Scholar
  58. Whitefield, J. F., Mac Manus, J. P., and Rixon, R. H., 1970, Potentiation by antidiuretic hormone (vasopressin) of the activity of parathyroid hormone to stimulate the proliferation of rat thymic lymphocytes, Hormone Metabol. Research, 2: 235–237.Google Scholar
  59. Yamasaki, Y., Shimamura, O., Kizu, A., Nakagawa, M., and Ijichi, H., 1982, IgE-mediated 14C-serotonin release from rat mast cells modulated by morphine and endorphins, Life Sci., 31: 471–478.PubMedCrossRefGoogle Scholar
  60. Yoshinori, I., Kazunori, M., Yukihiro, A., Tetsuya, N., Michihiro, F., and Showa, U., 1983, Attact stress and IgE antibody production in rats, Pharmacol. Biochem. and Behay., 19: 883–886.CrossRefGoogle Scholar
  61. Zalitis, G., Afanasyeva, G., G., Golubeva, V., Veretennikova, N., and Chipens, 1981, Immunochemical properties of rigin and tuftsin and their effects on cellular and humoral immunity, in: Abstr. of USSR Symp. Bioorg. Chemistry and Drug Design, Riga, 49.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • V. Kluša
    • 1
  • R. Muceniece
    • 1
  • Š. Svirskis
    • 1
  • E. Kukaine
    • 1
  • M. Ratkeviča
    • 1
  • G. Rosenthal
    • 1
  • G. Afanasyeva
    • 1
  1. 1.Institute of Organic SynthesisLatvian SSR Academy of SciencesRigaUSSR

Personalised recommendations