Advertisement

Endorphins: A Link Between Personality, Stress, Emotions, Immunity, and Disease ?

  • George S. Solomon
  • Neil Kay
  • John E. Morley

Abstract

A growing body of evidence — clinical and experimental, human and animal — that has been accumulating over the last 20 years since Solomon and Moos’ then-speculative theoretical integration of emotions, immunity and disease (1) pointed to experiential influences on immune function mediated by the central nervous system and the neuroendocrines, neurotransmitters, and neuropeptides controlled by it. The emerging field of psychoneuroimmunology (2), also referred to as neuroimmunomodulation (3), has rapidly expanded over the last few years due, in part, to the discovery that the endogenous opiods (endorphins), which are released from the anterior pituitary during stress, are potent immune system modulators.

Keywords

Growth Hormone Opioid Peptide Growth Hormone Response Maternal Separation Hypothalamic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solomon, G.F., Moos, R.H. Emotions, immunity and disease: A speculative theoretical integration. Arch. Gen. Psychiat. 11: 556–567, 1964.PubMedCrossRefGoogle Scholar
  2. 2.
    Ader, R. (ed.). Psychoneuroimmunology, Academic Press, New York, 1981.Google Scholar
  3. 3.
    Guillemin, R., Chone, M., Melnechak, T. (eds.) Neural Modulation of Immunity. Raven Press, New York, 1985.Google Scholar
  4. 4.
    Engel, G.L. A unified concept of health and disease. Perspect. Biol. Med. 3: 459–485, 1960.Google Scholar
  5. 5.
    Solomon, G.F. Emotional and personality factors in the onset and course of autoimmune disease, particularly rheumatoid arthritis. In: Ader, R.A. (ed.). Psychoneuroimmunology, Academic Press, New York, 1981, pp. 159–182.Google Scholar
  6. 6.
    Compston, A. Lymphocyte subpopulations in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiat. 46: 105–114, 1983.CrossRefGoogle Scholar
  7. 7.
    Moos, R.H. and Solomon, G.F. Personality correlates of the rapidity of progression of rheumatoid arthritis. Ann. Rheum. Dis. 23: 145–151, 1969.CrossRefGoogle Scholar
  8. 8.
    Solomon, G.F. and Moos, R.H. Psychologic aspects of response to treatment in rheumatoid arthritis. GP 32: 113–119, 1965.PubMedGoogle Scholar
  9. 9.
    Le Shan, L.L. and Worthington, R.E. Personality as a factor in the pathogenesis of cancer: Review of the literature. Brit. J. Med. Psychol. 29: 49–56, 1956.CrossRefGoogle Scholar
  10. 10.
    Bahnson, C.B. Stress and cancer: State of the art. Psychosomatic 21: 957–981, 1980.Google Scholar
  11. 11.
    Klopfer, B. Psychological variables in human cancer. J. Prof. Tech. 21: 331–340, 1957.Google Scholar
  12. 12.
    Weiner, H. Bronchial Asthma. In: Psychobiology and Human Disease, Elsevier, pp. 223–317, New York, 1977.Google Scholar
  13. 13.
    Solomon, G.F. Stress and antibody response in rats. Int. Arch. Allergy 35: 97–104, 1969.CrossRefGoogle Scholar
  14. 14.
    Monjan, A.A. and Collector, M.I. Stress-induced modulation of the immune response. Science, 196: 307, 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Amkraut, A.A., Solomon, G.F., Kasper, P., Purdue, A. Effects of stress and of hormonal intervention on the graft versus host response. Adv. Exper. Med. Biol. 29: 667–674, 1972.Google Scholar
  16. 16.
    Laudenslager, M.L., Rayan, S.M., Drugan, R.C., Hyson, R.L., Maier, S.F. Coping and immunosuppression: inescapable but not escapable shock suppresses lymphocyte proliferation. Science 221: 568–570, 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Maier, S.F., Laudenslager, M.L., Ryan, S.M. Stressor control- lability, immune function and endogenous opiates. Manuscript, 1983.Google Scholar
  18. 18.
    Keller, S., Weiss, J., Schleifer, S. et al. Suppression of immunity by stress: Effect of a graded series of stressors on lymphocyte stimulation in the rat. Science 221: 1301–1304, 1981.CrossRefGoogle Scholar
  19. 19.
    Amkraut, A., Solomon, G.F., Kraemer, H.C. Stress, early experience and adjuvant-induced arthritis in the rat. Psychosom. Med. 3: 203–214, 1971.Google Scholar
  20. 20.
    Ebbesen, P. Spontaneous amyloidosis in differently grouped and treated DBA-2, BALB-C and CMA mice and thymus fibrosis in estrogen-treated BALB-C males. J. Exp. Med. 127: 386–396, 1968.CrossRefGoogle Scholar
  21. 21.
    Laudenslager, M.L., Reite, M., Harbeck, R.J. Suppressed immune response in infant monkeys associated with maternal separation. Behay. Neurol. Biol. 36: 40–48, 1982.CrossRefGoogle Scholar
  22. 22.
    Reite, M., Harbeck, R., Hoffman, A. Altered cellular immune response following peer separation. Life Sci 29: 1133–1136, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Coe, C.L., Rosenberg, L.T., Levine, S. Immunological Consequences of Maternal Separation in Infant Primates. First international Workshop on Neuroimmunology, Bethesda, MD, November 28, 1984.Google Scholar
  24. 24.
    Metalnikov, S. and Chorin, V. The role of conditioned reflexes in immunity. Ann. Pasteu Inst. 11: 1–8, 1926.Google Scholar
  25. 25.
    Ader, R. Behaviorally conditioned immunosuppression. Psychosom. Med. 37: 333–340, 1975.PubMedGoogle Scholar
  26. 26.
    Kusnecov, A.W., Sivyer, M.G., King, A.J., Husband, A.W., Cripps, R.L. Behaviorally conditioned suppression of the immune response by antilymphocyte serum. J. Immunol. 189: 2117–2120, 1983.Google Scholar
  27. 27.
    Borbjerg, D. and Ader, R. Acquisition and extinction of conditioned suppression of a graft versus host response in the rat. Psychosom. Med. 45: 369 (Abstract), 1983.Google Scholar
  28. 28.
    Solvason, H.B., Ghanta, V., H.ramoto, R., Spector, N.H. Natural killer cell activity augmented by classical Pavlovian conditioning. First International Workshop on Neuroimmunology, Bethesda, MD, November 29, 1984.Google Scholar
  29. 29.
    Ader, R. Behaviorally conditioned immunosuppression and murine systemic iupus erythematosus. Science 215: 1534–1536, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Solomon, G.F., Levine, S., Kraft, J.K. Early experience and immunity. Nature 220: 821–822, 1968.PubMedCrossRefGoogle Scholar
  31. 31.
    Levine, S. Plasma-free corticosteroid response to electric shock in rats timulated in infancy. Science 135: 795–796, 1962.PubMedCrossRefGoogle Scholar
  32. 32.
    Amkraut, A. and Solomon, G.F. Stress and mutine sarcoma virus (Maloney)–Induced tumors. Cancer Res. 32: 1428–1433, 1972.PubMedGoogle Scholar
  33. 33.
    Rehe, R.H. Life changes and illness studies: Past history and future direction. J. Hum. Stress 4: 3–15, 1978.CrossRefGoogle Scholar
  34. 34.
    Locke, S.E., Kraus, L., Leserman, J. Life change stress, psy- chiatric symptoms and natural killer cell activity. Psychosom. Med. 46: 441–453, 1984.PubMedGoogle Scholar
  35. 35.
    Cobb, S. Social support as a moderator of life stress. Psychosom. Med. 38: 300–314, 1976.Google Scholar
  36. 36.
    Kobasa, S.C. Stressful life events, personality and health: An inquiry int.::: hardiness. J. Pers. Soc. Psychol. 37: 1–11, 1979.PubMedCrossRefGoogle Scholar
  37. 37.
    Solomon, G.F. and Amkraut, A.A. Emotions, immunity and disease. In: Temoshok, L., Van Dyke, C., Zegans, L.S. (eds.). Emotions in Health and Illness. Theoretical and Research Foundations. New York: Grun & Stratton, pp. 167–186, 1983.Google Scholar
  38. 38.
    Palmblad, J., Petrini, B., Wasserman, J., Akerstedt, T. Lymphocyte and granulocyte reactions during sleep deprivation. Psychosom. Med. 41: 273–276, 1979.Google Scholar
  39. 39.
    Cogli, A. and Tschopp, A. Lymphocyte reactivity during spaceflight. Immunol. Today 6: 1–4, 1985.CrossRefGoogle Scholar
  40. 40.
    Black, S., Humphrey, J.H., Niven, J.S. Inhibition of mantoux reaction by direct suggestion under hypnosis. Br. Med. J. 6: 1649–1653, 1963.Google Scholar
  41. 41.
    Hall, H.H. Hypnosis and the immune system: A review with implications for cancer and the psychology of healing. Am. J. Clin. Hypnosis 25: 92–103, 1983.CrossRefGoogle Scholar
  42. 42.
    Barrop, R.W., Lazarus, L., Luckhurst, E. et al. Depressed lymphocyte function after bereavement. Lancet 1: 834–836, 1977.CrossRefGoogle Scholar
  43. 43.
    Schleifer, S.J., Keller, S.E., McKegney, F.P., Stein, M. Bereavement and lymphocyte function. Paper delivered at annual meeting of Am. Psychiat. Assn., 1980 and personal communication, 1983.Google Scholar
  44. 44.
    Schleifer, S.J., Keller, S.E., Meyerson, A.T. et al. Lymphocyte function in major depressive disorder. Arch. Gen. Psychiat. 41: 484–486, 1984.PubMedCrossRefGoogle Scholar
  45. 45.
    Solomon, G.F. and Amkraut, A.A. Psychoneuroendocrinologic effects on the immune response. In: Starr, M.P. (ed.) Annual Review of Microbiology 35:155–184, Annual Reviews, Palo Alto, 1981.Google Scholar
  46. 46.
    Weber, R.J., Smith, C.C., Norcross, M.A., Paul, S.M., Pert, C.B. Characterization and Distribution of “Peripheral Type” Benzodiazepine Receptors on Cells of the Immune System. First International Workshop on Neuroimmunology, Bethesda, MD, November 27, 1984.Google Scholar
  47. 47.
    Shaskan, E.G. Probable Lymphoid Cell Sites of Action for Immunomodulation by Haloperidol. First International Workshop on Neuroimmunology, Bethesda, MD, November 27, 1984.Google Scholar
  48. 48.
    Cantor, H. and Gershon, R.K. Immunological circuits. Cellular compositions. Fed. Proc. 39: 2058–2064, 1979.Google Scholar
  49. 49.
    Helderman, J.H. and Strom, T.P. Specific binding site on T and B lymphocytes as a marker of cell activation. Nature 274: 62–63, 1978.PubMedCrossRefGoogle Scholar
  50. 50.
    Locke, S., Kraus, L., Kutz, S. et al. Altered Natural Killer Cell Activity During Norepinephrine Infusion in Humans. First International Workshop on Neuroimmunomodulation, Bethesda, MD, November 30, 1984.Google Scholar
  51. 51.
    Devoino, L.V., Eremine, O.F., Ilyutchenok R, Yu, R. The role of the hypothalamo-pituitary system in the mechanism of action of reserpine and 5-hydroxytryptophan on antibody production. Neuropharmacology 9: 67–72, 1970.PubMedCrossRefGoogle Scholar
  52. 52.
    Devoino, L.V. and Idova, G.V. Influence of some drugs on the immune response. IV. Effect of serotonin, 5-hydroxytryptophan, iproniazid and p-chlorphenylalanin on the synthesis of IgM and IgG antibodies. Eur. J. Pharm. 22: 325–331, 1973.CrossRefGoogle Scholar
  53. 53.
    Devoino, L.V., Ilyutchenok, R., Yu, Influence of some drugs on the immune response. U. Effects of serotonin, 5-hydroxytryptophan, reserpine and iproniazid on delayed hypersensitivity. Eur. J. Pharm. 4: 449–456, 1968.Google Scholar
  54. 54.
    Abramchik, G.N. Clinical aspects of serotonin treatment for autoimmune diseases. Paper delivered at Soviet Academy of Sciences conference. “Regulation of Immune Homeostasis,” Leningrad, 1982 (to be published in USSR, 1984 ).Google Scholar
  55. 55.
    Mybran, J. Enkephalins and endorphins as modifiers of the immune system: present and future. Fed. Proc. Vol. 44, No. 1, Part 1, pp. 92–94, January 1985.Google Scholar
  56. 56.
    Brown, G.M. and Reichlin, S. Psychologic and neural regulation of growth hormone secretion. Psychosom. Med. 34: 45–61, 1972.PubMedGoogle Scholar
  57. 57.
    DeLaFuente, J.R. and Wells, L.A. Human growth hormone in psychiatric disorders. J. Clin. Psych. 42: 270–274, 1981.Google Scholar
  58. 58.
    Yalow, R.S., Versano-Sharon, N., Echemendia, E., Berson, S.A. HGH and ACTH secretory responses to stress. Horm. Metab. Res. 1: 3, 1969.CrossRefGoogle Scholar
  59. 59.
    Miyabo, S., Hisada, T., Asata, T., Mizushima, No, Ueno, K. Growth hormone and cortisol responses to psychological stress. Comparison of normal and neurotic subjects. J. Clin. Endocrinol. Metab. 42: 1158, 1976.Google Scholar
  60. 60.
    Friedman, M., Byers, S.O., Roseman, R.H., Newman, R. Coronary-prone individuals (Type A behavior patterns) growth hormone responses. JAMA 217: 929, 1971.PubMedCrossRefGoogle Scholar
  61. 61.
    Mirsky, A. The psychosomatic approach to the etiology of clinical disorders. Psychosom. Med. 19–424–430, 1957.Google Scholar
  62. 62.
    Mason, J.W., Hartley, L.H. Kotchen, T.A., Wherry, F.E., Pennington, L.L., Jones, J.G. Plasma thyroid-stimulating hormone response in anticipation of muscular exercise in humans. J. Clin. Endocrinol. Metab. 37: 403, 1975.CrossRefGoogle Scholar
  63. 63.
    Mandelbrote, B.M. and Wittkower, E. Emotional factors in Grave’s disease. Psychosom. Med. 17: 109–117, 1955.PubMedGoogle Scholar
  64. 63a.
    Morley, J.E. and Shafer, R.B. Thyroid function screening in new psychiatric admissions. Arch. Int. Med. 42: 591–593, 1982.Google Scholar
  65. 64.
    Linkowski, P., Van Wetere, J.P., Kerhofs, M., Brauman, H., Mendlewicz, J. Thyrotrophin response to thyreostimulin in affectively ill women relationship to suicidal behavior. Brit. J. Psych. 143: 401–405, 1983.Google Scholar
  66. 65.
    Kreuz, L.E., Rose, R.M., Jennings, J.R. Suppression of plasma testosterone levels and psychological stress. Arch. Gen. Psych. 26–469, 1972.Google Scholar
  67. 66.
    Hamanaka, Y., Kurachi, K., Aono, T., Mizutani, S., Matsumoto, K. Effects of general anesthesia and severity of surgical streee on serum LH and testosterone in males. Acta. Endocrinol. 65: 258, 1975.Google Scholar
  68. 67.
    Mason, J.W. “Over-all” hormonal balance as a key to endocrine organization. Psychosom. Med. 30: 791–808, 1968.PubMedGoogle Scholar
  69. 68.
    Mason, J.W. A historical view of the stress field. Hum. Stress 1(1):6, 1 (2): 22, 1975.CrossRefGoogle Scholar
  70. 69.
    Mason, J.W. Levi, L. (ed.) In: Emotions - Their Parameters and Measurement. New York, Raven Press, pp. 143–181, 1975.Google Scholar
  71. 70.
    Tavadia, H.B., Fleming, K.A., Hume, P.D., Simpson, H.W. Circadian rhythmicity of human plasma cortisol and PHA-induced lymphocyte transformation. Climb. Exp. Immunol. 22: 199, 1975.Google Scholar
  72. 71.
    Fessel, W.J. and Forsythe, R.F. Hypothalamic role in control of gamma globulin levels. Arth. Rheum. 6: 770 (abstract), 1963.Google Scholar
  73. 72.
    Korneva, E.A. and Khae, L.M. Effects of destruction of hypothalamic areas on immunogenesis. Fiziol ZL SSSR 49: 42–46, 1963.Google Scholar
  74. 73.
    Korneva, E.A. The effects of stimulating different mesencephalic structures on protective immune response pattern. Fiziol ZL SSSR 53: 42–45, 1967.Google Scholar
  75. 74.
    Konovalov, G.F., Korneva, E.A., Khai, L.M. Effect of destruction of the posterior hypothalamic area on the experimental allergic polyneuritis. Brain Res. 29: 283–286, 1971.CrossRefGoogle Scholar
  76. 75.
    Macris, N.T., Schiavi, R.C., Camarino, M.S., Stein, M. Effect of hypothalamic lesions on immune processes in the guinea pig. Am. J. Physiol. 210: 1205–1209, 1972.Google Scholar
  77. 76.
    Jankovic, B.D. and Isokovic, K. Neuroendocrine correlates of immune response: 1. Effects of brain lesions on antibody production, arthus reactivity, and delayed hypersensitivity in the rat. Int. and Allergy 45: 360–372, 1973.CrossRefGoogle Scholar
  78. 77.
    Keller, S.E., Shapiro, R., Schleifer, S.J., Stein, M. Hypothalamic influences on anaqhylaxis. Psychosom. Med. 44: 302 (abstract), 1982.Google Scholar
  79. 78.
    Jankovic, B.D., Jankovic, D.LJ., Savovski, L. Effect of early epiphysectomy on the immune system of the chick embryo. First International Workshop on Neuroimmunology, B.thesda, MD, November 27, 1984.Google Scholar
  80. 79.
    Behan, P.O. and Geschwind, N. Hemisphere lateralization and immunity. In: Guillemin, R., Cohn, M., Melnechuk, T. Neural Modulation of Immunity. New York, Raven Press, pp. 73–80, 1985.Google Scholar
  81. 80.
    Biziere, K., Guillaumin, J.M., Degenne, D., Bardos, P., Renoux, M., Renoux, G. Lateralized Neocortical Modulation of the T-Cell Lineage. In: Guillemin, R., Cohn, M., Melnechuk, T. Neural Modulation of Immunity. New York, Raven Press, pp. 81–94, 1985.Google Scholar
  82. 81.
    Spector, N.H. Anatomic and physiological connections between the central nervous and immune systems (neuroimmunomodulation). In: Fabris, N., Garaci, E., Hadden, J., Mitchison, N.A. (eds.) Immunoregulation, New York, Plenum Press, 1983.Google Scholar
  83. 82.
    Bulloch, K. and Cullen, M.R. A Comparative Study of the Autonomic Nervous System Innervation of the Thymus in the Mouse and Chicken. At: First International Workshop on Neuroimmunomodulation. Lister Hill Center, NIH, Bethesda, MD, November 27–30, 1984.Google Scholar
  84. 83.
    Calvo, W. The innervation of the bone marrow in laboratory animals. Am. J. Anat. 123: 315, 1968.PubMedCrossRefGoogle Scholar
  85. 84.
    Bacui, I. La regulation nerveuse et humorale di l’erythropoiese.’ J. Physiol. (Paris) 54: 441, 1962.Google Scholar
  86. 85.
    Besdovsky, H.O., Sorkin, E., DaPrada, M., Keller, H.H. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol. 48: 346, 1979.CrossRefGoogle Scholar
  87. 86.
    Besedocsky, H.O. and Sorkin, E. Network of immune-neuroendocrine interactions. Clin. Exp. Immunol. 27: 1–12, 1977.Google Scholar
  88. 87.
    Besedovsky, H.O., DelRey, A., Sorkin, E., DaPrada, M., Keller, H.H. Immunoregulation mediated by the sympathetic nervous system. Cell. Immunol. 48–346–355, 1979.Google Scholar
  89. 88.
    Rebar, R.W. Miyake, A., Low, T.L.K., Goldstein, A.L. Thymosin stimulates secretion of leuterinizing hormone-releasing factor. Science 213: 669–671, 1981.CrossRefGoogle Scholar
  90. 89.
    Jancovic, B.D. Immunomodulation of neural structures and functions. Paper delivered at Academy of Sciences of USSR conference (to be published in Russia, 1984), Leningrad, 1982.Google Scholar
  91. 90.
    Fabris, N. Endocrine control of thymic factor production in young adult and old mice. Paper prepared for Academy of Science of USSR conference, “Regulation of Immune Homeostasis,” Leningrad, 1982.Google Scholar
  92. 91.
    Dung, H.C. Deficiency in the thymus - dependent immunity in “lethargic” mutant mice. Transplantation 23: 39, 1977.PubMedCrossRefGoogle Scholar
  93. 92.
    Fabri, N., Moccegianni, E., Muzzioli, M., Imberti, R. Thymusneuroendocrine network. In: Fabris, N., Garaci, E., Hadden, J., Mitchison, N.A. (eds.). Immunoregulation, New York, Plenum Press, pp. 341–362, 1983.Google Scholar
  94. 93.
    Saxena, R.K. and Talway, G.P. An anterior pituitary factor stimulates thymide incorporation in isolated thymocytes. Nature 268: 57, 1977.PubMedCrossRefGoogle Scholar
  95. 94.
    Hall, H.R., McGullis, J.P., Spangelo, S.L. et al. Thymic hormone effects on the brain and neuroendocrine circuits. In: Guillemin, R., Cohn, M., Melnechuk, T. (eds.). Neural Modulation of Immunity. Raven Press, New York, pp. 179–193, 1985.Google Scholar
  96. 95.
    Jones, M.T., Hillhouse, E.W., Burden, J. Effects of various putative neurotransmitters on the secretion of corticotropia. J. Endocrinol. 69: 1–10, 1975.CrossRefGoogle Scholar
  97. 96.
    Besedovsky, H.O., Sorkin, E., Keller, H.H. Changes in the concentration of corticosterone in the blood during skin graft rejection in the rat. J. Endocrinol. 76: 175–176, 1978.PubMedCrossRefGoogle Scholar
  98. 97.
    Desedovsky, H.O., DelRey, A., Sorkin, E., DaPrada, M., Keller, H.H. immunoregulation mediated by the sympathetic nervous system. Cell Immunol. 48: 346–355, 1979.CrossRefGoogle Scholar
  99. 98.
    Hall, N.R. and Goldstein, A.L. Role of thymosin and the neuroendocrine system in the regulation of immunity. In: Fabris, N., Garaci, E. Hadden, J., Mitchison, N.A. (eds.). Immunoregulation, New York, Plenum Press, pp. 141–163, 1983.Google Scholar
  100. 99.
    Besedovsky, H.O., DelRey, A., Sorkin, E., DaPrada, M., Burri, R., Honneger, C. The immune response evokes changes in brain noradrenergic neurons. Science 221–564–565, 1983.Google Scholar
  101. 100.
    Morley, J.E. The endocrinology of the opiates and the opioid peptides. Metabolism 30: 195–209, 1981.PubMedCrossRefGoogle Scholar
  102. 101.
    Brown, S.M., Stemmel, B., Taub, R.N., Kochwa, S., Rosenfeld, R.E. Immunologic dysfunction in heroin addicts. Arch. Int. Med. 134: 1001–1006, 1974.CrossRefGoogle Scholar
  103. 102.
    Hazum, E., Chang, K.J., Cautrecasas, P. Specific non-opiate receptors for B-endorphin. Science 205: 1033–1035, 1979.PubMedCrossRefGoogle Scholar
  104. 103.
    Blalock, J.E. and Smith, E.M. Human leukocyte interferon: Structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc. Natl. Acad. Sci. USA 77: 5972–5974, 1980.PubMedCrossRefGoogle Scholar
  105. 104.
    Gilman, S.C., Schwartz, J.M., Milner, R.J., Bloodm, F.E., Feldman, J.D. B-endorphin ehances lymphocyte proliferative responses. Proc. Natl. Acad. Sci. USA 79: 4226–4230, 1982.PubMedCrossRefGoogle Scholar
  106. 105.
    McCain, H.W., Lassiter, I.B., Bozzone, J.M., Grbic, J.T. B-endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sci. 31: 1619–1624, 1982.PubMedCrossRefGoogle Scholar
  107. 106.
    Plotnikoff, N. and Miller, G.C. Enkephalins as immunodilators. Int. J. Immunopharmacol. 5: 437–441, 1983.CrossRefGoogle Scholar
  108. 107.
    Kay, N.E., Allen, J., Morley, J.E. Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity. Life Sci. 35: 53–59, 1984.PubMedCrossRefGoogle Scholar
  109. 108.
    Mathews, P.M., Froelich, C.J., Sibbit, W.L., Bankhurst, A.D. Enhancement of natural cytotoxicity by B-endorphin. J. Immunol. 130: 1658–1662, 1983.PubMedGoogle Scholar
  110. 109.
    Faith, R.E., Liang, H.J., Murgo, A.J., Plotnikoff, N.P. Neuroimmunomodulation with enkephalins: Enhancement of natural killer (NK) cell activity in vitro. Clin. Immunol. Immunopathol.Google Scholar
  111. 31:.
    -481, 1984.Google Scholar
  112. 110.
    Li, C.H., Yamashiro, D., Tseng, L.F., Chang, W.C., Ferrara, P. B-endorphin omission analogs: Dissociation of immunoreactivity from other biological activities. Proc. Natl. Acad. Sci. USA 77: 3211–3214, 1980.PubMedCrossRefGoogle Scholar
  113. 111.
    Moon, T.D., Morley, J.E., Vesella, R.L., Lange, P.H. The role of calmodulin in human NK activity. Scand. J. Immunol. 18: 255–258, 1983a.PubMedCrossRefGoogle Scholar
  114. 112.
    Baram, D. and Simantov, R. Enkephalins and opiate antagonists control calmodulin distribution in neuroblastoma-glima cells. J. Neurochem. 40: 55–63, 1983.PubMedCrossRefGoogle Scholar
  115. 113.
    Clouet, D., Williams, N., Yonehara, N. Is a calmodulin-opiopeptide interaction related to the mechanism of opioid action. Life Sci. 33: 727–730, 1983.PubMedCrossRefGoogle Scholar
  116. 114.
    Solomon, G.F., Merigan, T.C., Levine, S. Variations in adrenal cortical hormones within physiologic ranges, stress and interferon production in mice. Proc. Soc. Exp. Biol. Med. 126: 74069, 1967.Google Scholar
  117. 115.
    Dafny, N. Modification of morphine withdrawal by interferon. Life Sci. 32: 303–305, 1983.PubMedCrossRefGoogle Scholar
  118. 116.
    Ahmed, M.S., Llanos, J., Blatties, C.M. Interleukin-1 interacts with opioid binding sites. Proc. Soc. Neurosci. Abstr. 10: 1109, 1984.Google Scholar
  119. 117.
    Morley, J.E., Baranetsky, N.G., Wingert, T.D., Carlson, H.E., Heshman, J.M., Melmed, S., Levin, S.R., Januson, K.R., Weitzman, R., Chang, R.J., Varner, A.A. Endocrine effects of naloxoneinduced opiate receptor blockade. J. Clin. Endocrinol. Metab. 50: 251–257, 1980.PubMedCrossRefGoogle Scholar
  120. 118.
    Joseph, S.A., Pilcher, W.H., Knigge, K.M. Anatomy of the corticotropin-releasing factor and opiomelanocortin systems of the brain. Fed. Proc. Vol.44, No. 1, Part 1, pp. 100–107, January 1985.Google Scholar
  121. 119.
    Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., Bloom, F. B-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197: 1360–1372, 1977.CrossRefGoogle Scholar
  122. 120.
    Smith, E.M. and Blalock, J.E. Lymphocyte Production of Neurally Active Pituitary Hormone-like Molecules. First International Workshop on Neuroimmunomodulation, Bethesda, MD, November 27, 1984.Google Scholar
  123. 121.
    Hanbauer, I., Kelly, G.D., Saini, L., Yang, H.Y.T. (Met5)enkephalin-like peptides of the adrenal medulla: Release by nerve stimulation and functional implications. Peptides 3: 469473, 1982.Google Scholar
  124. 122.
    Blalock, J.E. and Smith, E.M. A complete regulatory 1-op between the immune and neuroendocrine systems. Fed. Proc. Vol. 44, No. 1, Part 1, pp. 108–111, January 1985.Google Scholar
  125. 123.
    Shavit, Y., Lewis, J.W., Terman, G.W. et al. Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science 223: 188–190, 1984.PubMedCrossRefGoogle Scholar
  126. 124.
    Solomon, G.F. The Emerging Field of Psychoneuroimmunology: Hypotheses, Supporting Evidence and New Directions. Advance (in press).Google Scholar
  127. 125.
    Plotnikoff, N.P.,Murgo, A.J., Miller, G.C., Cordev, C.N., Faith, R.E.Enkephalins-Immunomodulation.Fed. Proc. 44:118–122, 1985.Google Scholar
  128. 126.
    Plotnikoff, N.P., Kasten, A.J., Coy, D.M., Christensen, C.W., Schally, A.V., Spirtes, M.A. Neuropharmacological actions of enkephalin after systemic administration. Life Sci. 19: 1283 1288, 1976.Google Scholar
  129. 127.
    Sharp, B., Keane, W.F., Suh, H.J., Gekker, G., Peterson, P.K. Opioid peptides stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Clin. Res. (in press), 1985.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • George S. Solomon
    • 1
    • 2
  • Neil Kay
    • 1
    • 2
  • John E. Morley
    • 1
    • 2
  1. 1.Education and Clinical Center Sepulveda VA Medical Center (11E)Geriatric ResearchUSA
  2. 2.Minneapolis VA Medical Center MinneapolisUSA

Personalised recommendations