Algebraic Models of Categorial Grammars

  • Wojciech Buszkowski


Categorial grammars (the term introduced by Bar Hillel et al. (1960)) are the formal grammars which comprise two basic constituents: (1) an initial type assignment, i.e., a function which assigns a finite set of syntactic types to each atomic expression (word) of a given language, (2) a system of type reduction laws which enables one to produce the terminal type assignment, i.e., a function which assigns a set of syntactic types to each expression of that language (cf. Marcus (1967)). The types are intended to denote syntactic categories of expressions (we identify the categories with sets of expressions), and the type reduction laws reflect certain universal (that means, independent of a particular language) relations between categories. The very idea of categorial grammar should be credited to Ajdukiewicz (1935), though, of course, some origins can be traced back to Frege, Leśniewski, Tarski and others.


Algebraic Model Reduction System Algebraic Semantic Formal Grammar Categorial Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajdukiewicz, K., 1935, Die syntaktische Konnexität, Studia Philosophica, 1:1–27.Google Scholar
  2. Bar-Hillel, Y., Gaifman, C., and Shamir, E., 1960, On Categorial and Phrase-Structure Grammars, Bull. Res. Council Israel, F, 9:1-16.Google Scholar
  3. Batóg, T., 1967, “The Axiomatic Method in Phonology,” Routledge and Kegan Paul LTD, London.Google Scholar
  4. van Benthem, J., 1983, The Semantics of Variety in Categorial Grammar, in: “Categorial Grammar,” W. Buszkowski, ed., J. Benjamins B. V., Amsterdam (to appear).Google Scholar
  5. Bocheński, I. M., 1949, On the Syntactical Categories, New Scholasticism, 23:257–280.CrossRefGoogle Scholar
  6. Buszkowski, W., 1978, Undecidability of Some Logical Extensions of Ajdukiewicz — Lambek Calculus, Studia Logica, 37, 1:59–64.CrossRefGoogle Scholar
  7. Buszkowski, W., 1981, Categories of Partial Functors, Lingua Posnaniensis, 24:63–70.Google Scholar
  8. Buszkowski, W., 1982, Compatibility of a Categorial Grammar with an Associated Category System, ZML, 28:229–238.Google Scholar
  9. Buszkowski, W., 1982a, Some Decision Problems in the Theory of Syntactic Categories, ZML, 28:539–548.Google Scholar
  10. Buszkowski, W., 1982b, “Lambek’s Categorial Grammars,” Adam Mickiewicz University, Poznań.Google Scholar
  11. Buszkowski, W., 1984, Fregean Grammar and Residuated Semigroup, in: “Proceedings of 2nd Frege Conference,” G. Asser, ed., (to appear).Google Scholar
  12. Buszkowski, W., 1985, The Equivalence of Unidirectional Lambek Categorial Grammars and Context-free Grammars, ZML, 31 (to appear).Google Scholar
  13. Buszkowski, W., 1985?, Completeness Results for Lambek Syntactic Calculus, ZML, (to appear).Google Scholar
  14. Buszkowski, W., I, “Logical Foundations of Ajdukiewicz — Lambek Categorial Grammars, Logic and Applications of Logic,” PWN, Warszawa (to appear in Polish).Google Scholar
  15. Buszkowski, W., II, Syntactic Functors in Grammar, forthcoming.Google Scholar
  16. Chomsky, N., 1963, Formal Properties of Grammars, in: “Handbook of Mathematical Psychology,” R. Duncan Luce, R. R. Bush, and E. Galanter, eds., John Wiley and Sons, New York and London.Google Scholar
  17. Cohen, J. M., 1967, The Equivalence of Two Concepts of Categorial Grammar, Information and Control, 10:475–484.CrossRefGoogle Scholar
  18. Cresswell, M. J., 1973, “Logics and Languages,” Methuen, London.Google Scholar
  19. Došen, K., 1984, A Completeness Theorem for the Lambek Calculus of Syntactic Categories, ZML, 30 (to appear).Google Scholar
  20. Fuchs, L., 1963, “Partially Ordered Algebraic Systems,” Pergamon Press, Oxford.Google Scholar
  21. Geach, P., 1972, A Program for Syntax, in: “Semantics of Natural Language,” D. Davidson and G. Harman, eds., Reidel, Dordrecht.Google Scholar
  22. Heidrich, H., 1979, Formal Capacity of Montague Grammars, in: “Logic, Methodology and Philosophy of Science VI,” L. J. Cohen, J. Łoś, H. Pfeiffer, and K. P. Podewski, eds., PWN, Warsaw (1982).Google Scholar
  23. Hiż, H., 1960, The Intuition of Grammatical Categories, Methodos, 48, 12:1–9.Google Scholar
  24. Hiż, H., 1967, Grammar Logicism, The Monist, 51, 1:110–127.Google Scholar
  25. Karlgren, H., 1974, Categorial Grammar Calculus, SMIL, 1-126.Google Scholar
  26. Lambek, J., 1958, The Mathematics of Sentence Structure, American Math. Monthly, 65:154–170.CrossRefGoogle Scholar
  27. Lambek, J., 1961, On the Calculus of Syntactic Types, in: “Structure of Language and Its Mathematical Aspects,”, R. Jakobson, ed., AMS, Providence.Google Scholar
  28. Lehrberger, J., 1974, “Functor Analysis of Natural Language,” Janua Linguarum, S. Minor, 197, Mouton, The Hague and Paris.Google Scholar
  29. Marcus, S., 1967, “Algebraic Linguistics: Analytical Models,” Academic Press, New York and London.Google Scholar
  30. Montague, R., 1974, “Formal Philosophy,” R. Thomason, ed., Yale University Press, New Haven.Google Scholar
  31. Suszko, R., 1958, Syntactic Structure and Semantical Reference I, Studia Logica, 8:213–248.CrossRefGoogle Scholar
  32. Suszko, R., 1960, Syntactic Structure and Semantical Reference II, Studia Logica, 9:63–94.CrossRefGoogle Scholar
  33. Tarski, A., 1933, “Pojȩcie prawdy w jȩzykach nauk dedukcyjnych,” Warszawa.Google Scholar
  34. Zielonka, W., 1978, A Direct Proof of the Equivalence of Free Categorial Grammars and Simple Phrase Structure Grammars, Studia Logica, 37, 1:41–58.CrossRefGoogle Scholar
  35. Zielonka, W., 1981, Axiomatizability of Ajdukiewicz — Lambek Calculus by means of Cancellation Schemes, ZML, 27:215–224.Google Scholar
  36. Zielonka, W., 1981a, Equivalence Problems in the Theory of Syntactic Type Calculi, in Polish, unpublished Dissertation, Adam Mickiewicz University, Poznań.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Wojciech Buszkowski
    • 1
  1. 1.Institute of MathematicsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations