Superordinal Affinities of Rodentia Studied by Sequence Analysis of Eye Lens Protein

  • Wilfried W. de Jong
Conference paper
Part of the NATO Advanced Science Institutes (ASI) Series book series (NSSA, volume 92)


The development of techniques to determine the amino acid sequences of proteins and the nucleotide sequences of genes has dramatically increased our insight into the structure and function of these macromolecules. These techniques also provide the ultimate tools to unravel evolutionary processes at the molecular level. Much is indeed known already about the evolutionary changes and mutational processes in proteins and their genes (Wilson et al., 1977; Sigman and Brazier, 1980; Dover and Flavell, 1982).


Fiber Cell Common Ancestry Amino Acid Replacement Tree Shrew Minke Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloemendal, H. (ed.) 1981. Molecular and Cellular Biology of the Eye Lens, Wiley, New York.Google Scholar
  2. Clayton, R. M. 1974. Comparative aspects of lens proteins. In: The Eye, Volume 5, H. Davson and L. T. Graham, eds., pp. 399–494, Academic Press, New York.Google Scholar
  3. Cohen, L. H., Westerhuis, L. W., De Jong, W. W., and Bloemendal, H. 1978. Rat α-crystallin A-chain with an insertion of twenty-two residues, Eur. J. Biochem. 89: 259–266.PubMedCrossRefGoogle Scholar
  4. De Jong, W. W. 1981. Evolution of lens and crystallins. In: Molecular and Cellular Biology of the Eye Lens, H. Bloemendal, ed., pp. 221–278, Wiley, New York.Google Scholar
  5. De Jong, W. W. 1982. Eye lens proteins and vertebrate phylogeny. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 75–114, Plenum Press, New York.CrossRefGoogle Scholar
  6. De Jong, W. W. and Goodman, M. 1982. Mammalian phylogeny studied by sequence analysis of the eye lens protein α-crystallin. Z. Säugetierkunde 47: 257–276.Google Scholar
  7. De Jong, W. W., Zweers, A., and Goodman, M. 1981. Relationship of aardvark to elephants, hyraxes and sea cows from α-crystallin sequences. Nature 292: 538–540.PubMedCrossRefGoogle Scholar
  8. De Jong, W. W., Zweers, A., Versteeg, M., and Nuy-Terwindt, E. C. 1984. Primary structures of the α-crystallin A chains of twenty-eight mammalian species, chicken, and frog. Eur. J. Biochem. 141: 131–140.PubMedCrossRefGoogle Scholar
  9. Dover, G. A. and Flavell, R. B. (eds.) 1982. Genome Evolution. Academic Press, New York.Google Scholar
  10. Fitch, W. M. and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155: 279–284.PubMedCrossRefGoogle Scholar
  11. Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G. 1979. Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28: 132–163.CrossRefGoogle Scholar
  12. Hendy, M. D., Penny, D., and Foulds, L. R. 1978. Identification of phylogenetic trees of minimal length. J. Theor. Biol. 71: 441–452.PubMedCrossRefGoogle Scholar
  13. Ingolia, T. D. and Craig, E. A. 1982. Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc. Natl. Acad. Sci. USA 79: 2360–2364.PubMedCrossRefGoogle Scholar
  14. Joysey, K. A. 1981. Molecular evolution and vertebrate phylogeny i perspective. Symp. Zool. Soc. Lond. 46: 189–218.Google Scholar
  15. King, C. R. and Piatigorsky, J. 1983. Alternative RNA splicing of the murine αA-crystallin gene. Cell 32: 707–712.PubMedCrossRefGoogle Scholar
  16. Moormann, R.J. M., Van der Velden, H. M. W., Dodemont, H. J., Andreoli, P. M., Bloemendal, H., and Schoenmakers, J. G. G. 1981. An unusually long non-coding region in rat lens α-crystallin messenger RNA. Nucl. Acids Res. 9: 4813–4822.PubMedCrossRefGoogle Scholar
  17. Piatigorsky, J. 1984. δ-Crystallins and their nucleic acids. Molec. Cell. Biochem. 59: 33–56.PubMedCrossRefGoogle Scholar
  18. Piatigorsky, J. in press. Lens crystallins and their gene families. Cell.Google Scholar
  19. Sigman, D. S. and Brazier, M. A. B. (eds.) 1980. The Evolution of Protein Structure and function. Academic Press, New York.Google Scholar
  20. Slack, J. 1984. A Rosetta stone for pattern formation in animals? Nature 310: 364–365.PubMedCrossRefGoogle Scholar
  21. Stapel, S. O., Leunissen, J. A. M., Versteeg, M., Wattel, J. and De Jong, W. W. 1984. Ratites as oldest offshoot of avian stem: evidence from α-crystallin A sequences. Nature 311: 257–259.PubMedCrossRefGoogle Scholar
  22. Wilson, A. C., Carlson, S. S., and White, T. J. 1977. Biochemical evolution. Ann. Rev. Biochem. 46: 573–639.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Wilfried W. de Jong
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations