Advertisement

A Phylogeny of Rodentia and Other Eutherian Orders: Parsimony Analysis Utilizing Amino Acid Sequences of Alpha and Beta Hemoglobin Chains

  • Jeheskel Shoshani
  • Morris Goodman
  • John Czelusniak
  • Gerhard Braunitzer
Conference paper
Part of the NATO Advanced Science Institutes (ASI) Series book series (NSSA, volume 92)

Abstract

Recent evidence of a mass extinction of eukaryotic life at the Cretaceous-Paleocene boundary, 65 million years ago, (e.g., Alvarez et al., 1984; Smit and Van der Kaars, 1984) strengthens the traditional view of a bush-like pattern of origin and radiation for the 18 or more orders in the infraclass Eutheria. Apparently several basal eutherian lineages survived the extinction and embarked 65 million years ago on a burst of cladogenetic change during which a series of dichotomous branchings occurred in rapid succession. Clearly it will not be easy to resolve such a bush-like pattern into a discriminating and accurate tree. Nevertheless, the molecular biological analysis of phylogeny promises to contribute significantly to this effort at resolving the branching pattern of this eutherian bush. Protein amino acid sequencing provides a major source of the molecular biological data. In this paper we focus on a genealogical reconstruction, carried out by the parsimony method, on alpha and beta hemoglobin sequences from 83 vertebrate species, 58 of which are placental mammals representing 13 of the 18 or so extant orders of Eutheria. Among the represented orders is Rodentia, the phylogeny of which is the topic of this symposium.

Keywords

Maximum Parsimony Mute Swan Protein Amino Acid Sequencing Cavia Porcellus Microtine Rodent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, W., Kauffman, E.G., Surlyk, F., Alvarez, L.W., Asaro, F., and Michel, H.V. 1984. Impact theory of mass extinctions and the invertebrate fossil record. Science 223:1135–1141.PubMedCrossRefGoogle Scholar
  2. Barnes, L.G., and Mitchell, E. 1978. Cetacea. In: The Evolution of African Mammals, V.J. Maglio, and H.B.S. Cooke, eds., pp. 582–602, Harvard Univ. Press, Cambridge, Massachusetts.Google Scholar
  3. Bieber, F.A., and Braunitzer, G. 1983. Die Primaerstruktur des Haemoglobins von Bisam (Ondatra zibethica Rodentia). Hoppe-Seyler’s Z. Physiol. Chem. 364:1527–1536.PubMedCrossRefGoogle Scholar
  4. Braunitzer, G., and Godovac, J. 1982. Hemoglobins, XLV: The amino acid sequence of pheasant (Phasianus colchicus colchicus) hemoglobins. Hoppe-Seyler’s Z. Physiol. Chem. 363:229–238.PubMedCrossRefGoogle Scholar
  5. Braunitzer, G., Jelkmann, G.W., Stangl, A., Schrank, B. and Krombach, C. 1982. Die primaere Struktur des Haemoglobins des indischen Elephanten (Elephas maximus, Proboscidea): B2=Asn. Hoppe-Seyler’s Z. Physiol. Chem. 363:683–691.PubMedCrossRefGoogle Scholar
  6. Braunitzer, G., Wright, P.G., Stangle, A., Schrank, B., and Krombach C. 1983. Amino acid sequence of haemoglobin hippopotamus (Hippopotamus amphibius, Artiodactyla). S. Af. J. Sci. 79: 411–412.Google Scholar
  7. Carleton, M.D. 1984. Introduction to rodents. In: Orders and Families of Recent Mammals, S. Anderson and J.K. Jones, Jr., eds., pp. 255–265, John Wiley and Sons, New York.Google Scholar
  8. Carleton, M.D., and Musser, G.G. 1984. Murid rodents. In: Orders and Families of Recent Mammals, S. Anderson and J.K. Jones, Jr., eds., pp. 290–379, John Wiley and Sons, New York.Google Scholar
  9. Colbert, E.H. 1982. Evolution of the Vertebrates: a History of the Backboned Animals through Time (Third Edition). John Wiley and Sons, Inc. New York.Google Scholar
  10. Czelusniak, J., Goodman, M., Hewett-Emmett, D., Weiss, M.L., Venta, P.J., and Tashian, R.E. 1982. Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes. Nature 298:297–300.PubMedCrossRefGoogle Scholar
  11. De Jong, W.W. 1982. Eye lens proteins and vertebrate phylogeny. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 75–114, Plenum Press, New York.CrossRefGoogle Scholar
  12. Ebril, G., and Niessing, J. 1982. The complete nucleotide sequence of the duck alpha A-globin gene. Gene 20:211–217.CrossRefGoogle Scholar
  13. Farris, J.S. 1972. Estimating phylogenetic trees from distance matrices. Am. Nat. 106:645–668.CrossRefGoogle Scholar
  14. Fitch, W.M., and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155:279–284.PubMedCrossRefGoogle Scholar
  15. Godovac-Zimmermann, J., and Braunitzer, G. 1983. The amino acid sequence of Northern Mallard (Anas platyrhynchos platyrhynchos) hemoglobin. Hoppe-Seyler’s Z. Physiol. Chem. 364:665–674.PubMedCrossRefGoogle Scholar
  16. Godovac-Zimmermann, J., and Braunitzer, G. 1984. The amino acid sequence of alpha A and beta chains from the major hemoglobin component of American Flamingo (Phonicopterus ruber ruber). Hoppe-Seyler’s Physiol. Chemie. 355:437–443.CrossRefGoogle Scholar
  17. Goodman, M., Braunitzer, G., Stangl, A., and Schrank, R. 1983. Evidence on human origins from haemoglobins of African apes. Nature 303:546–548.PubMedCrossRefGoogle Scholar
  18. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., and Matsuda, G. 1979. Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28:132–163.CrossRefGoogle Scholar
  19. Goodman, M., Romero-Herrera, A.E., Dene, H., Czelusniak, J., and Tashian, R.E. 1982. Amino acid sequence evidence on the phylogeny of primates and other eutherians. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 115–191, Plenum Press, New York.CrossRefGoogle Scholar
  20. Gregory, W.K. 1910. The orders of mammals. Bull. Amer. Mus. Nat. Hist. 27:1–524.Google Scholar
  21. Hewett-Emmett, D., Hopkins, P., Tashian, R.E., and Czelusniak, J. 1984. Origins and molecular evolution of the carbonic anhydrase isoenzymes. Ann. N.Y. Acad. Sci. 429:338–358.PubMedCrossRefGoogle Scholar
  22. Honacki, J.H., Kinman, K.E., and Koeppl, J.W. (eds.). 1982. Mammal species of the world: a taxonomic and geographic reference. Allen Press, Inc. and The Association of Systematic Collections, Lawrence, Kansas.Google Scholar
  23. Kay, R.M., Harris, R., Patient, R.K., and Williams, J.W. 1983. Complete nucleotide sequence of a cloned cDNA derived from the major adult α-globin mRNA of X. laevis. Nucleic Acid Res. 11: 1537–1542.PubMedCrossRefGoogle Scholar
  24. Kleinschmidt, T., and Braunitzer, G. 1982. Die Primaerstruktur des Haemoglobins vom Aegyptischen Flughund (Rousettus aegyptiacus, Chiroptera). Hoppe-Seyler’s Z. Physiol. Chem. 363:1209–1215.PubMedCrossRefGoogle Scholar
  25. Kleinschmidt, T., and Braunitzer, G. 1983a. Die Primaerstruktur des Haemoglobins vom Abessinischen Klippschlieferr (Procavia habessinica): Insertion von Glutamin in den a-ketten. Hoppe-Seyler’s Z. Physiol. Chem. 364:1303–1313.PubMedCrossRefGoogle Scholar
  26. Kleinschmidt, T., and Braunitzer, G. 1983b. Die Primaerstruktur des Haemoglobins vom Grossen tuemmler (Tursiops truncatus, Cetacea). Biomed. Biochim. Acta 42:685–695.PubMedGoogle Scholar
  27. Kleinschmidt, T., Jelkmann, W., and Braunitzer, G. 1981. Die Primaerstruktur des Haemoglobins des Maulwurfs (Talpa europaea). Hoppe-Seyler’s Z. Physiol. Chem. 362:1263–1272.PubMedCrossRefGoogle Scholar
  28. Kleinschmidt, T., Nevo, E., and Braunitzer, G. 1984. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, Rodentia, Chromosome species 60). Hoppe-Seyler’s Z. Physiol. Chem. 365:531–537.PubMedCrossRefGoogle Scholar
  29. Leclerq, F., Schnek, A., Braunitzer, G., Stangl, A., and Schrank, B. 1981. Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate sequence of the hemoglobins of the caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis). Hoppe-Seyler’s Z. Physiol. Chem. 362:1151–1158.CrossRefGoogle Scholar
  30. Le Gros Clark, W.E., and Sonntag, C.F. 1926. A monograph of Orycteropus afer.—III. The Skull. The skeleton of the trunk and limbs. General summary. Proc. Zool. Soc. London 30:445–485.Google Scholar
  31. Leone, C.A., and Wiens, A.L. 1956. Comparative serology of carnivores. J. Mammal. 37:11–23.CrossRefGoogle Scholar
  32. Levine, H.P., and Moody, P.A. 1939. Serological investigation of rodent relationships. Physiol. Zool. 12:400–411.Google Scholar
  33. Lillegraven, J.A., Kielan-Jaworowska, Z., and Clemens, W.A. (eds.). 1979. The First Two-thirds of Mammalian History: Mesozoic Mammals. University of California Press, Berkeley.Google Scholar
  34. Maita, T., Matsuda, G., Takanaka, O., and Takahashi, K. 1981. The primary structure of adult hemoglobin of musk shrew (Suncus murinus). Hoppe-Seyler’s Z. Physiol. Chem. 362:1465–1474.PubMedCrossRefGoogle Scholar
  35. Mazur, G., and Braunitzer, G. 1982. Haemoglobine, XLIV. Perissodactyla: Die sequenz der Haemoglobine vom Wildesel (Equus hemionus kulan) und zebra (Equus zebra). Hoppe-Seyler’s Z. Physiol. Chem. 363:59–71.PubMedCrossRefGoogle Scholar
  36. Mazur, G., and Braunitzer, G. 1984. Perissodactyla: Die Primaerstruktur der Haemoglobine eines Flachlandtapirs (Tapirus terrestris), Beta =Glutaminsaeure. Hoppe-Seyler’s Z. Physiol. Chem. 365:1077–1106.CrossRefGoogle Scholar
  37. Mazur, G., Braunitzer, G., and Wright, P.G. 1982. Die Primaerstruktur des Haemoglobins vom Breitmaulnashorn (Ceratotherium simum, Perissodactyla): beta2 Glu. Hoppe-Seyler’s Z. Physiol. Chem. 363:1077–1085.PubMedCrossRefGoogle Scholar
  38. McKenna, M.C. 1975. Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates: a Multidisciplinary Approach, W.P. Luckett, and F.S. Szalay, eds. pp. 21–46, Plenum Press, New York.CrossRefGoogle Scholar
  39. Moore, G.W. 1976. Proof for the maximum parsimony (“Red King”) algorithm. In: Molecular Anthropology: Genes and Proteins in the Evolutionary Ascent of the Primates, M. Goodman and R.E. Tashian, eds., pp. 117–137, Plenum Press, New York.Google Scholar
  40. Moore, G.W., Barnabas, J., and Goodman, M. 1973. A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J. Theor. Biol. 38:459–485.PubMedCrossRefGoogle Scholar
  41. Niessing, J. 1981. Molecular cloning and nucleotide sequence analysis of adult duck beta-globin cDNA. Biochem. Int. 2:113–120.Google Scholar
  42. Novacek, M.J. 1982. Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In: Macromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 3–41, Plenum Press, New York.CrossRefGoogle Scholar
  43. Oberthur, W., and Braunitzer, G. 1984. Haemoglobine vom Gemeinen star (Sturnus vulgaris, Passeriformes), die Primaerstruktur der A-, D-, and b-ketten. Hoppe-Seyler’s Z. Physiol. Chem. 365: 159–173.PubMedCrossRefGoogle Scholar
  44. Oberthur, W., Braunitzer, G., Baumann, R., and Wright, P.G. 1983b. Die Primaerstruktur der A-and B-ketten der Hauptkomponeuten der Haemoglobine des Strausses (Struthio camelus) und des Nandus (Rhea americana) (Struthioformes). Hoppe-Seyler’s Z. Physiol. Chem. 364:119–134.PubMedCrossRefGoogle Scholar
  45. Oberthur, W., Braunitzer, G., Grimm, F., and Koesters, J. 1983c. Haemoglobine des Steinadlers (Aquila chrysaetos, Accipitriformes): Die Aminosaeure-sequenz der A-and B-ketter der Hauptkomponente. Hoppe-Seyler’s Z. Physiol. Chem. 364:851–858.PubMedCrossRefGoogle Scholar
  46. Oberthur, W., Godovac-Zimmermann, J., Braunitzer, G., and Wiesner, H. 1982. The amino acid sequence of Canada goose (Branta canadensis) and mute swan (Cygnus olor) hemoglobins: two different species with identical beta-chains. Hoppe-Seyler’s Z. Physiol. Chem. 363:777–787.PubMedCrossRefGoogle Scholar
  47. Oberthur, W., Wiesner, H., Braunitzer, G. 1983a. Die Primaerstruktur der A-and B-ketten der Hauptkomponente der Haemoglobine der spaltfussgans (Anseranas semipalmata, Anatidae). Hoppe-Seyler’s Z. Physiol. Chem. 36451–59.PubMedCrossRefGoogle Scholar
  48. Patient, R.K., Harris, R., Walmsley, M.E., and Williams, J.G. 1983. The complete nucleotide sequence of the major adult beta globin gene of Xenopus laevis. J. Biological Chemistry 258: 8521–8523.Google Scholar
  49. Patterson, B. 1978. Pholidota and Tubulidentata. In: Evolution of African Mammals, V.J. Maglio and H.B.S. Cooke, eds., pp. 268–278, Harvard University Press, Cambridge, Mass.Google Scholar
  50. Pauly, L.K., and Wolfe, H.R. 1957. Serological relationships among members of the order Carnivora. Zoologica 42:159–166.Google Scholar
  51. Romer, A.S. 1966. Vertebrate Paleontology (Third Ed.). University of Chicago Press, Chicago.Google Scholar
  52. Sarich, V.M. 1975. Pinniped systematics: immunological comparisons of their albumin and transferrins. Amer. Zool. 15:826.Google Scholar
  53. Savage, D.E., and Russell, D.E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley Advanced Book Program, Reading, Mass.Google Scholar
  54. Shoshani, J., Goodman, M., Barnhart, M.I., Prychodko, W., Vereshchagin, N.K., and Mikhelson, V.M. 1981. Blood cells and proteins in the Magadan mammoth calf: immunodiffusion comparisons of Mammuthus to extant paenungulates and tissue ultrastructure. In: Magadan Baby Mammoth, Mammuthus primigenius (Blumenbach), N.K. Vereshchagin, and V.M. Mikhelson, eds., pp. 191–220, “Nauka” Publishers, Leningrad.Google Scholar
  55. Simpson, G.G. 1945. The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85:1–350.Google Scholar
  56. Smit, J., and Van Der Kaars, S. 1984. Terminal Cretaceous extinctions in the Hell Creek area, Montana: compatible with catastrophic extinction. Science 223:1117–1179.CrossRefGoogle Scholar
  57. Sokal, R.R., and Michener, C.D. 1958. A statistical method for evaluating systematic relationships. Kansas Univ. Sci. Bull. 382:1409–1438.Google Scholar
  58. Szalay, F.S. 1977. Phylogenetic relationships and a classification of the eutherian Mammalia. In: Major Patterns in Vertebrate Evolution, M.K. Hecht, P.C. Goody, and B.M. Hecht, eds., pp. 315–374, Plenum Publishing Co., New York.CrossRefGoogle Scholar
  59. Tedford, R.H. 1976. Relationship of pinnipeds to other carnivores (Mammalia). Syst. Zool. 25:363–374.CrossRefGoogle Scholar
  60. Thenius, E. 1969. Phylogenie der Mammalia: Stammesgeschichte der Saeugetiere (eischliesslich der Hominiden). Walter de Gruyter and Co., Berlin.Google Scholar
  61. Whitworth, T. 1954. The Miocene hyracoids of East Africa with some observations on the order Hyracoidea. Fossil Mammals of Africa, British Museum (Nat. Hist.) 7:1–58.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Jeheskel Shoshani
    • 1
  • Morris Goodman
    • 1
    • 2
  • John Czelusniak
    • 1
    • 2
  • Gerhard Braunitzer
    • 3
  1. 1.Department of Biological SciencesWayne State UniversityDetroitUSA
  2. 2.Department of Anatomy, School of MedicineWayne State UniversityDetroitUSA
  3. 3.Abteilung Proteinchemie Martinsried bei MünchenMax-Planck-Institute für BiochemieMunichWest Germany

Personalised recommendations