Advertisement

Karyotype Variability and Chromosome Transilience in Rodents: The Case of the Genus Mus

  • Ernesto Capanna
Conference paper
Part of the NATO Advanced Science Institutes (ASI) Series book series (NSSA, volume 92)

Abstract

In the evolutionary processes a basic distinction must be made between adaptive divergence and transilience (Templeton, 1982), because the latter involves a discontinuity in which some sort of reproductive barrier is overcome by different evolutionary forces in which chromosomal rearrangements (chromosomal transilience) have to be considered as preeminent. Oversimplifying this semantic dichotomy, natural selection drives adaptive divergence, while transilience occurs in spite of it. This non-Darwinian formulation of transilience speciation obviously must be accepted with all due caution. As will be shown below, some sort of selective advantage must be involved in the chromosomal rearrangement itself in order to allow the fixation of the new karyotype in the population.

Keywords

Chromosomal Rearrangement House Mouse Diploid Number Metacentric Chromosome Spiny Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, S. and Klein, J. 1981. Robertsonian variation in Mus musculus from Central Europe, Spain, and Scotland. J. Hered. 72: 219–221.PubMedGoogle Scholar
  2. Berry, R. J., Brooker, P. C., Lush, I. E., Nash, H. R., and Newton, M. F. 1981. Robertsonian translocations in wild mice. Mouse News Letter 64: 65–66.Google Scholar
  3. Bonhomme, F., Britton-Davidian, J., Thaler, L., Triantaphyllidis, C. 1978. Sur l’existence en Europe de quatre groupes de souris (genre Mus) du rang espèce et semiespèce demontrée par la génétique biochimique. C. R. Acad. Sci. Paris 287(D): 631–633.Google Scholar
  4. Bonhomme, F., Catalan, J., Gautun, J. C., Petter, F., and Thaler, L. 1982. Caractérisation biochimique de souris africaines référables au sous-genre Nannomys Peters, 1876. Mammalia 46: 110–113.Google Scholar
  5. Capanna, E. 1976. Gametic aneuploidy in the mouse hybrids. Chromosomes Today 5: 83–89.Google Scholar
  6. Capanna, E. 1980. Chromosomal rearrangement and speciation in progress in Mus musculus. Folia Zool. 29: 43–57.Google Scholar
  7. Capanna, E. 1982. Robertsonian numerical variation in animal speciation. Mus musculus, an emblematic case. In: Mechanisms of Speciation, C. Barigozzi, ed., pp. 155–174, Alan R. Liss, New York.Google Scholar
  8. Capanna, E., Civitelli, M. V. and Cristaldi, M. 1977. Chromosomal rearrangement, reproductive isolation and speciation in mammals. The case of Mus musculus. Boll. Zool. 44: 213–246.CrossRefGoogle Scholar
  9. Capanna, E. and Corti, M. 1982. Reproductive isolation between two chromosomal races of Mus musculus in the Rhaetian Alps (Northern Italy). Mammalia 46: 107–109.Google Scholar
  10. Capanna, E., Corti, M., Mainardi, D., Parmigiani, S. and Brain, P. 1984. Karyotype and internale aggression in wild house mice: ecology and speciation. Behavior Genet. 14: 195–208.CrossRefGoogle Scholar
  11. Capanna, E., Gropp, A., Winking, H., Noack, G. and Civitelli, M. V. 1976. Robertsonian metacentrics in the mouse. Chromosoma 58: 341–353.PubMedCrossRefGoogle Scholar
  12. Capanna, E. and Merani, M. S. 1981. Karyotypes of Somalian rodent populations. 2. The chromosomes of Gerbillus dunni (Thomas), Gerbillus pusillus Peters and Ammodillus imbellis (De Winton) (Cricetidae, Gerbillinae). Monit. Zool. Ital. N. S., Suppl. 14: 227–240.Google Scholar
  13. Capanna, E. and Riscassi, E. 1978. Robertsonian karyotype variability in natural Mus musculus populations in the Lombardy area of Po valley. Boll. Zool. 45: 63–71.CrossRefGoogle Scholar
  14. Capanna, E. and Valle, M. 1977. A Robertsonian population of Mus musculus in the Orobian Alps. Acc. Naz. Lincei, Rend. Sc. Mat. Fis. Nat. 62: 680–684.Google Scholar
  15. Chakrabarta, S. and Chakrabarta, A. 1977. Spontaneous Robertsonian fusions leading to karyotype variation in the house mouse. Experientia 33: 175–176.CrossRefGoogle Scholar
  16. Dev, V. G., Miller, D. A., Tantravah, R., Schrech, P. P., Roderig, T. H., Erlanger, B. P. and Miller, O. J. 1975. Chromosome markers in Mus musculus: differences in M. m. musculus and M. m. molossinus. Chromosoma 53: 335–344.PubMedCrossRefGoogle Scholar
  17. Dhanda, V., Mishza, A. C., Bhat, U. K. M. and Wagh, U. V. 1973. Karyological studies on two sibling species in the spiny mouse Mus saxicola and Mus plathythrix. The Nucleus 16: 56–59.Google Scholar
  18. Dobzhansky, T. 1970. Genetics and the Evolutionary Process. Cambridge Univ. Press, New York.Google Scholar
  19. Ellerman, J. R. and Morrison-Scott, T. C. S. 1966. Checklist of Palaearctic and Indian Mammals, 2nd ed. British Museum (Nat. Hist.), London.Google Scholar
  20. Godena, G., D’Alonzo, F., and Cristaldi, M. 1978. Correlation entre caryotype et biotype chez le Lérot (Eliomys quercinus) et autres Rongeurs de l’île de Lipari. Mammalia 42: 382–383.Google Scholar
  21. Grohe, G., Gropp, A., Gropp, D., Jüdes, U., Kolbus, U., Noack, G., and Winking, H. 1981. Robertsonian chromosomes in mice from North-eastern Greece. Mouse News Letter 19: 84–85.Google Scholar
  22. Gropp, A., Marshall, J., and Markvong, A. 1973. Chromosomal findings in the spiny mice of Thailand (genus Mus) and occurrence of a complex intraspecific variation in M. shortridgei. Z. Säugetierk. 38: 159–168.Google Scholar
  23. Gropp, A., Tettenborn, U., and Lehmann, E. von 1970. Chromosomenvariation von Robertson’schen typus bei der Tabakmaus, Mus poschiavinus, und ihren hybriden mit der Laboratoriusmaus. Cytogenetics 9: 9–23.PubMedCrossRefGoogle Scholar
  24. Gropp, A., Winking, H., Redi, C. A., Capanna, E., Britton-Davidian, J., and Noack, G. 1982. Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenet. Cell Genet. 34: 67–77.PubMedCrossRefGoogle Scholar
  25. Hedrick, P. W. 1981. The establishment of chromosomal variants. Evolution 35: 322–332.CrossRefGoogle Scholar
  26. Honacki, J. H., Kinman, K. E., and Koeppl, J. W. (eds.) 1982. Mammal Species of the World. Allen Press, New York.Google Scholar
  27. Hsu, T. C., Markvong, A., and Marshall, J. T. 1978. G-band patterns of six species of mice belonging to subgenus Mus. Cytogenet. Cell Genet. 20: 304–307.PubMedCrossRefGoogle Scholar
  28. Hunt, W. G. and Selander, R. K. 1973. Biochemical genetics of hybridization in European house mouse. Heredity 31: 11–33.PubMedCrossRefGoogle Scholar
  29. Jotterand, M. 1970. Un nouveau système polymorphe Robertsonien chez une nouvelle espèce de Leggada (Mus goundae Petter). Experientia 26: 1360–1361.PubMedCrossRefGoogle Scholar
  30. Jotterand, M. 1972. Polymorphisme chromosomique de Mus (Leggadas) Africains. Cytogénetique, Zoogéographie, evolution. Rev. Suisse Zool. 79: 287–359.PubMedGoogle Scholar
  31. Jotterand, M. 1975. The African Mus (pigmy mice): the role of chromosomal polymorphism in speciation. Caryologia 28: 335–344.Google Scholar
  32. Jotterand, M. 1981a. Le caryotype et la spermatogénèse de Mus setulosus (bandes Q, C, G et coloration argentique). Genetica 56: 217–227.CrossRefGoogle Scholar
  33. Jotterand, M. 1981b. La formule chromosomique de Mus setulosus (Leggada). In: Wirbeltierzytogenetick, H.-J. Müller, ed., pp. 44–57, Birkhauser Verlag, Basel.Google Scholar
  34. Lande, R. L. 1979. Effective deme size during long-term evolution estimated from rates of chromosomal rearrangements. Evolution 33: 234–251.CrossRefGoogle Scholar
  35. Markvong, A., Marshall, J. T., and Gropp, A. 1973. Chromosomes of rats and mice of Thailand. Nat. Hist. Bull. Siam Soc. 25: 23–32.Google Scholar
  36. Markvong, A., Marshall, J. T., Pathak, S., and Hsu, T. C. 1975. Chromosomes and DNA of Mus; the karyotypes of M. fulvidisventris and M. dunni. Cytogenet. Cell Genet. 14: 116–125.CrossRefGoogle Scholar
  37. Marshall, J. T. 1977. A synopsis of Asian species of Mus (Rodentia, Muridae). Bull. Amer. Mus. Nat. Hist. 158: 177–220.Google Scholar
  38. Marshall, J. T. and Sage, R. D. 1981. Taxonomy of the house mouse. Symp. Zool. Soc. Lond. 47: 15–25.Google Scholar
  39. Matthey, R. 1954. Un cas nouveaux de chromosomes sexuels multiples dans le genre Gerbillus (Rodentia, Gerbillinae). Experientia 10: 464–466.PubMedCrossRefGoogle Scholar
  40. Matthey, R. 1966. Le polymorphisme chromosomique des Mus Africains du sous genre Leggada. Révision générale portant sur l’analyse de 213 individus. Rev. Suisse Zool. 73: 585–607.Google Scholar
  41. Matthey, R. 1967. Un nouveau système chromosomique polymorphe chez des Leggadas Africains du groupe tenellus (Rodentia, Muridae). Genetica 38: 211–226.CrossRefGoogle Scholar
  42. Matthey, R. 1970. L’ “évental Robertsonienne” chez le Mus (Leggada) Africains du groupe minutoides-musculoides. Rev. Suisse Zool. 77: 625–629.PubMedGoogle Scholar
  43. Matthey, R. 1973. Leggadas (Mus. sp.) de Moundou (Tchad). Observations d’un caryotype aberrant chez une femelle. Genetica 44: 71–79.CrossRefGoogle Scholar
  44. Matthey, R. and Jotterand, M. 1970. Nouveau Systeme polymorphe non-Robertsonien chez de Leggadas (Mus sp.) de République Centro-Africaine. Rev. Suisse Zool. 77: 630–637.PubMedGoogle Scholar
  45. Matthey, R. and Petter, F. 1968. Existence de deux espèces distinctes, l’une chromosomiquement polymorphe chez de Mus indiens du groupe booduga. Etude cytogénétique et taxonomique. Rev. Suisse Zool. 75: 461–498.PubMedGoogle Scholar
  46. Mayr, E. 1970. Population, Species and Evolution. Harvard Univ. Press, Cambridge.Google Scholar
  47. Pathak, S. 1970. The karyotype of Mus platythrix Bennet (1832), a favorable mammal for cytogenetic investigations. Mamm. Chrom. Newsletter 11: 105–106.Google Scholar
  48. Petter, F. and Genest, H. 1970. Liste préliminaire des Rongeurs Myomorphes de République Centro-Africaine. Description de deux espèces nouvelles: Mus oubanguii et Mus goundae. Mammalia 34: 451–458.Google Scholar
  49. Petter, F. and Matthey, R. 1975. Genus Mus. In: The Mammals of Africa: An Identification Manual, Part 6.7, J. Meester and H. W. Setzer, eds., pp. 1–4, Smithsonian Inst. Press, Washington.Google Scholar
  50. Reig, O. A. and Kiblinski, P. 1969. Chromosome multiformity in the genus Ctenomys (Rodentia, Octodontidae). Chromosoma 28: 211–244.PubMedCrossRefGoogle Scholar
  51. Robinson, T. J. 1978. Preliminary report of a Robertsonian translocation in an isolated feral Mus musculus population. Mamm. Chrom. Newsletter 19: 84.Google Scholar
  52. Satya Prakash, K. L. and Aswathanarayana, N. V. 1973. The chromosomes of the spiny mouse Mus platythrix. Mamm. Chrom. Newsletter 13: 120–121.Google Scholar
  53. Templeton, A. R. 1982. Genetic architecture of speciation. In: Mechanisms of Speciation, C. Barigozzi, ed., pp. 105–121, Alan R. Liss, New York.Google Scholar
  54. Thaler, L., Bonhomme, F., and Britton-Davidian, J. 1981. Processes of speciation and semi-speciation in the house mouse. Symp. Zool. Soc. Lond. 47: 27–41.Google Scholar
  55. Thenius, E. 1969. Phylogenie der Mammalia: Stammesgeschichte der Säugetiere (einschliesslich der Hominiden). W. de Gruyter, Berlin.Google Scholar
  56. Viegas-Péquignot, E., Benazzon, T., Dutrillaux, B., and Petter, F. 1982. Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet. Cell Genet. 34: 158–167.PubMedCrossRefGoogle Scholar
  57. Volobuyev, V. T. 1980. The B-chromosome system of mammals. In: Animal Genetics and Evolution, N. N. Vorontsov and J. M. van Brink, eds., pp. 333–337, W. Junk, The Hague.Google Scholar
  58. Wahrman, J. and Gourevitz, P. 1973. Extreme chromosome variability in a colonizing rodent. Chromosomes Today 4: 399–424.Google Scholar
  59. Wahrman, J. and Zahavi, A. 1955. Cytological contributions to the phylogeny and classification of the rodent genus Gerbillus. Nature 175: 600–602.CrossRefGoogle Scholar
  60. White, M. J. D. 1968. Models of speciation. Science 159: 1065–1070.PubMedCrossRefGoogle Scholar
  61. White, M. J. D. 1973. Animal Cytology and Evolution, 3rd ed. Cambridge Univ. Press, London.Google Scholar
  62. White, M. J. D. 1978a. Modes of Speciation. W. H. Freeman, San Francisco.Google Scholar
  63. White, M. J. D. 1978b. Chain process in chromosomal speciation. Syst. Zool. 27: 285–298.CrossRefGoogle Scholar
  64. Wurster-Hill, D. H., Hsu, T. C., Gropp, A., Zech, L., and Marshall, J. T. 1973. Q-, G-and benzimidazole banding comparisons in several species of Eurasian Mus. Mamm. Chrom. Newsletter 14: 85–86.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Ernesto Capanna
    • 1
  1. 1.Department of Animal and Human BiologyUniversity of RomeRomeItaly

Personalised recommendations