Advertisement

Reproductive and Chromosomal Characters of Ctenodactylids as a Key to Their Evolutionary Relationships

  • Wilma George
Conference paper
Part of the NATO Advanced Science Institutes (ASI) Series book series (NSSA, volume 92)

Abstract

When Zittel named the family Ctenodactylidae in 1893 to include Ctenodactylus, Pectinator, Petromys and the fossil Pelligrinia, the genera of gundis had had a chequered career in the classification systems. Originally, Ctenodactylus had been classified with Petromus as a dipodid by Gervais (1848), but gundis were octodontids for Brandt (1855), Flower and Lydekker (1891). Blyth (1855) assigned Pectinator to the chinchillids, and the two genera became murids in Alston’s classification of 1876. With the addition of two more genera, the gundis achieved family status, but this did not make their position any more certain, and they wandered round the suborders for the next 90 years. Tullberg (1899) and Ellerman (1940) claimed them for the Myomorpha; Wood (1955) for the Sciuromorpha; Thomas (1896), Winge (1924), Weber (1928) and Landry (1957) for the Hystricomorpha; and the majority were unable to assign them to any of the three conventional suborders (Miller and Gidley, 1918; Bohlin, 1946; Simpson, 1945; Grassé and Dekeyser, 1955; Wood, 1965, 1974, 1977; Shevyreva, 1971; Chaline and Mein, 1979; Patterson and Wood, 1982). They gave rise to feelings of despair in some authors: “this group vies with or exceeds the bathyergids in uncertainty” (Simpson, 1945) - and “les rapports avec les autres formes restent de plus en plus énigmatiques” (Grassé and Dekeyser, 1955).

Keywords

Tree Shrew Gestation Length Litter Weight Azygous Vein Parietal Endoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alston, E. R. 1876. On the classification of the order Glires. Proc. Zool. Soc. Lond. 1876: 61–98.Google Scholar
  2. Arey, L. B. 1954. Developmental Anatomy. W. B. Saunders, Philadelphia.Google Scholar
  3. Asdell, S. A. 1964. Patterns of Mammalian Reproduction. Cornell University Press, Ithaca.Google Scholar
  4. Barnett, C. H., Harrison, R. J., and Tomlinson, J. D. W. 1958. Variations in the venous systems of mammals. Biol. Rev. 33: 442–487.CrossRefGoogle Scholar
  5. Beddard, F. E. 1907. On the azygous veins in the Mammalia. Proc. Zool. Soc. Lond. 1907: 181–223.Google Scholar
  6. Bisby, F. A. 1973. The role of taximetrics in angiosperm taxonomy. New Phytol. 72: 699–726.CrossRefGoogle Scholar
  7. Blainville, H. M. D. de 1816. Prodrome d’une nouvelle distribution systématique du règne animal. Bull. Sci. Soc. Philom. Paris sér. 3, 3: 105–124.Google Scholar
  8. Blyth, E. 1855. Report on a zoological collection from the Somali country. J. Asiatic Soc. Bengal 24: 291–306.Google Scholar
  9. Bohlin, B. 1946. The fossil mammals from the Tertiary deposit of Taben-Buluk, western Kansu part 2. Paleont. Sinica ser. C, 8b: 1–259.Google Scholar
  10. Borgaonkar, D. S. 1969. Insectivora cytogenetics. In: Comparative Mammalian Cytogenetics, K. Benirschke, ed., pp. 218–246, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  11. Brandt, J. F. 1855. Beiträge zur nähern Kenntniss der Säugethiere Russlands. Mem. Acad. Imp. Sci. St. Petersbourg, ser. 6, 9: 1–365.Google Scholar
  12. Bugge, J. 1974. The cephalic arterial system in insectivores, primates, rodents and lagomorphs with special reference to the systematic classification. Acta. Anat. 87(suppl. 62): 1–160.CrossRefGoogle Scholar
  13. Burt, W. H. 1960. Bacula of North American mammals. Misc. Publ. Mus. Zool. Univ. Mich. 113: 1–175.Google Scholar
  14. Chaline, J., and Mein, P. 1979. Les Rongeurs et l’Evolution. Doin, Paris.Google Scholar
  15. Dathe, H. 1937. über den Bau des männlichen Kopulationsorganes beim Meerschweinchen und anderen hystricomorphen Nagetieren. Morphol. Jahrb. 80: 1–65.Google Scholar
  16. Davies, C. 1982. The recent and fossil affinities of the genus Pedetes (Mammalia, Rodentia). D. Phil. thesis, Oxford University.Google Scholar
  17. Dawson, M. R. 1977. Late Eocene rodent radiations in North America, Europe and Asia. Géobios Mém. Spéc. 1: 195–209.CrossRefGoogle Scholar
  18. Eisenberg, J. F. 1981. The Mammalian Radiations. Athlone Press, London.Google Scholar
  19. Ellerman, J. R. 1940. The Families and Genera of Living Rodents. British Museum (Natural History), London, 2 vols.Google Scholar
  20. Estabrook, G. F. 1966. A mathematical model in graph theory for biological classification. J. Theor. Biol. 12: 297–310.PubMedCrossRefGoogle Scholar
  21. Flower, W. H., and Lydekker, R. 1891. An Introduction to the Study of Mammals Living and Extinct. Black, London.Google Scholar
  22. Gallimore, P. H., and Richardson, C. R. 1973. An improved banding technique exemplified in the karyotype analysis of two strains of rat. Chromosoma 41: 259–263.PubMedCrossRefGoogle Scholar
  23. George, W. 1978. Reproduction in female gundis (Rodentia: Ctenodactylidae). J. Zool. 185: 57–71.CrossRefGoogle Scholar
  24. George, W. 1979a. The chromosomes of the hystricomorphous family Ctenodactylidae (Rodentia:? Sciuromorpha) and their bearing on the relationships of the four living genera. Zool. J. Linn. Soc. 65: 261–280.CrossRefGoogle Scholar
  25. George, W. 1979b. Conservatism in the karyotypes of two African mole rats (Rodentia: Bathyergidae). Z. Säugetierk. 44: 278–285.Google Scholar
  26. George, W. 1980. A study in hystricomorph rodent relationships: The karyotypes of Thryonomys gregorianus, Pedetes capensis, and Hystrix cristata. Zool. J. Linn. Soc. 68: 361–372.CrossRefGoogle Scholar
  27. George, W. 1981. Blood vascular patterns in rodents: Contributions to an analysis of rodent family relationships. Zool. J. Linn. Soc. 73: 287–306.CrossRefGoogle Scholar
  28. George, W. and Weir, B. 1974. Hystricomorph chromosomes. In: The Biology of Hystricomorph Rodents, I. W. Rowlands and B. J. Weir, eds., pp. 143–160, Academic Press, London.Google Scholar
  29. Gervais, P. 1848. Rongeurs. In: Dictionnaire Universel d’Histoire Naturelle, C. D’Orbigny, ed., vol. 11, pp. 198-204.Google Scholar
  30. Grassé, P.-P. and Dekeyser, P. L. 1955. Traité de Zoologie. Masson, Paris, vol 17, 2: 1542.Google Scholar
  31. Gropp, A. 1969. Cytologic mechanisms of karyotype evolution in insectivores. In: Comparative Mammalian Cytogenetics, K. Benirschke, ed., pp. 247–266, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  32. Hussain, S. T., Bruijn, H. de and Leinders, J. M. 1978. Middle Eocene rodents from the Kala Chitta Range (Punjab, Pakistan). Proc. K. Ned. Akad. Wet. 81B: 74–112.Google Scholar
  33. Koulischer, L. 1973. Common patterns of chromosome evolution in mammalian cell cultures or malignant tumours and mammalian speciation. In: Cytotaxonomy and Vertebrate Evolution, A. B. Chiarelli and E. Capanna, eds., pp. 129–164, Academic Press, New York.Google Scholar
  34. Landry, S. O. 1957. The interrelationships of the New and Old World hystricomorph rodents. Univ. Calif. Publ. Zool. 56: 1–118.Google Scholar
  35. Lindsay, E. H. 1977. Simimys and the origin of the Cricetidae (Rodentia: Muroidea). Géobios 10: 597–623.CrossRefGoogle Scholar
  36. Luckett, W. P. 1971. The development of the chorio-allantoic placenta of the African scaly-tailed squirrels (family Anomaluridae). Amer. J. Anat. 130: 159–178.PubMedCrossRefGoogle Scholar
  37. Luckett, W. P. 1980a. Fetal membrane and placenta development in the African hystricomorphous rodent Ctenodactylus. Anat. Rec. 196: 116A.Google Scholar
  38. Luckett, W. P. 1980b. Monophyletic or diphyletic origins of Anthropoidea and Hystricognathi: Evidence of the fetal membranes. In: Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon and A. B. Chiarelli, eds., pp. 347–368, Plenum Press, New York.CrossRefGoogle Scholar
  39. Millar, J. S. 1972. Timing of breeding of pikas in southwestern Alberta. Canad. J. Zool. 50: 665–669.CrossRefGoogle Scholar
  40. Miller, G. S. and Gidley, J. W. 1918. Synopsis of the super-generic groups of rodents. J. Wash. Acad. Sci. 8: 431–448.Google Scholar
  41. Nadler, C. F., Lyapunova, E. A., Hoffman, R. S., Vorontsov, N. N., and Malygina, N. A. 1975. Chromosomal evolution in holarctic ground squirrels (Spermophilus) I. Giemsa band homologies in Spermophilus columbianus and S. undulatus. Z. Säugetierk. 40: 1–7.Google Scholar
  42. Nelson, G. 1978. Ontogeny, phylogeny, paleontology and the biogenetic law. Syst. Zool. 27: 324–345.CrossRefGoogle Scholar
  43. Novacek, M. J. 1980. Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 35–93, Plenum Press, New York.CrossRefGoogle Scholar
  44. Oduor-Okelo, D. 1978. A histological study on the ovary of the African cane rat Thryonomys swinderianus. East Africa Wildl. J. 16: 257–264.CrossRefGoogle Scholar
  45. Patterson, B. and Wood, A. E. 1982. Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bull. Mus. Comp. Zool. Harv. 149: 371–453.Google Scholar
  46. Renzoni, A. 1967. Chromosome studies in two species of rodents. Mammal Chromosome Newsletter 8: 111–112.Google Scholar
  47. Sacher, G. A. and Staffeldt, E. F. 1974. Relation of gestation time to brain weight for placental mammals. Amer. Nat. 108: 593–615.CrossRefGoogle Scholar
  48. Sale, J. 1965. Gestation period and neonatal weight of the hyrax. Nature 205: 1240–1241.CrossRefGoogle Scholar
  49. Sale, J. 1969. Breeding season and litter size in Hyracoidea. J. Reprod. Fert. Suppl. 6: 249–263.Google Scholar
  50. Savage, D. E. and Russell, D. E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley, Reading, Mass.Google Scholar
  51. Shevyreva, N. S. 1971. New middle Oligocene rodents of Kazakhstan and Mongolia. Acad. Sci. USSR. Paleont. Inst. Proc. 130: 70–86.Google Scholar
  52. Shevyreva, N. S. 1972. New rodents from the Palaeogene of Mongolia and Kazakhstan. Akad. Nauk. SSSR, Paleontol. Zh. 3: 134–145.Google Scholar
  53. Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.Google Scholar
  54. Thomas, O. 1896. On the genera of the rodents: An attempt to bring up to date the current arrangement of the order. Proc. Zool. Soc. Lond. 1896: 1012–1028.Google Scholar
  55. Tullberg, T. 1899. Ueber das System der Nagethiere, eine phylogenetische Studie. Nova Acta Reg. Soc. Sci. Upsala, ser. 3, 18: 1–514.Google Scholar
  56. Verts, B. J., Gehman, S. D., and Hundertmark, K. J. 1984. Sylvilagus nuttalii a semiarboreal lagomorph. J. Mammal. 65: 131–135.CrossRefGoogle Scholar
  57. Wahlert, J. H. 1974. The cranial foramina of protrogomorphous rodents, an anatomical and phylogenetic study. Bull. Mus. Comp. Zool. Harv. 146: 363–410.Google Scholar
  58. Weber, M. 1928. Die Säugetiere, Vol. 2. Fischer, Jena.Google Scholar
  59. Weir, B. J. 1974. Reproductive characteristics of hystricomorph rodents. In: The Biology of Hystricomorph Rodents, I. W. Rowlands and B. J. Weir, eds., pp. 265–301, Academic Press, London.Google Scholar
  60. Weir, B. J. and Rowlands, I. W. 1973. Reproductive strategies of mammals. Ann. Rev. Ecol. Syst. 4: 139–163.CrossRefGoogle Scholar
  61. Wiley, E. O. 1981. Phylogenetics. Wiley, New York.Google Scholar
  62. Winge, H. 1924. Pattedyr-Slaegter, Vol. 2. Hagerups, Copenhagen.Google Scholar
  63. Wolfe, J. A. 1978. A palaeobotanical interpretation of Tertiary climates in the northern hemisphere. Amer. Sci. 66: 694–703.Google Scholar
  64. Wood, A. E. 1955. A revised classification of the rodents. J. Mammal. 36: 165–187.CrossRefGoogle Scholar
  65. Wood, A. E. 1962. The early Tertiary rodents of the family Paramyidae. Trans. Amer. Phil. Soc. 52: 1–261.CrossRefGoogle Scholar
  66. Wood, A. E. 1965. Grades and clades among rodents. Evolution 19: 115–130.CrossRefGoogle Scholar
  67. Wood, A. E. 1974. The evolution of the Old World and New World hystricomorphs. In: The Biology of Hystricomorph Rodents, I. W. Rowlands and B. J. Weir, eds., pp. 21–54, Academic Press, London.Google Scholar
  68. Wood, A. E. 1977. The evolution of the rodent family Ctenodactylidae. J. Paleont. Soc. India 20: 120–137.Google Scholar
  69. Wood, A. E. and Patterson, B. 1959. The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution. Bull. Mus. Comp. Zool. Harv. 120: 281–428.Google Scholar
  70. Woods, C. A. 1972. Comparative myology of jaw, hyoid and pectoral appendicular regions of New and Old World hystricomorph rodents. Bull. Amer. Mus. Nat. Hist. 147: 115–198.Google Scholar
  71. Wurster, D. H. 1969. Cytogenetic and phylogenetic studies in Carnivora. In: Comparative Mammalian Cytogenetics, K. Benirschke, ed., pp. 310–329, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  72. Wurster, D. H. and Benirschke, K. 1968. Comparative cytogenetic studies in the order Carnivora. Chromosoma 24: 336–382.PubMedCrossRefGoogle Scholar
  73. Zittel, K. A. von, 1893. Handbuch der Paleontologie Abt. 1. Palaeozoologie Band 4. Vertebrata (Mammalia). Oldenbourg, Munich.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Wilma George
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordEngland

Personalised recommendations