Homologies of Molar Cusps and Crests, and Their Bearing on Assessments of Rodent Phylogeny

  • P. M. Butler
Conference paper
Part of the NATO Advanced Science Institutes (ASI) Series book series (NSSA, volume 92)


Evidence for phylogeny derives basically from morphological comparisons, whether of the structure of protein molecules, chromosomes, skulls, or, in the case of paleontological material, mainly teeth. The concept of homology arises from the recognition that some resemblances are more significant than others that are superficial or accidental. It is necessary to decide, when comparing two species, which structural element in one species should be compared with an element in the other. Such corresponding structures in different animals are given the same name (Gr. homos, same; logos, word), and resemblances and differences between them form the raw data on which phylogenetic hypotheses are based. Whether resemblances are due to inheritance from a common ancestor, or whether they have been produced by parallel evolution, is a question that can be decided only after considerable investigation, if at all. Therefore, in this paper I will use the term homology in its etymological sense, to mean morphologically comparable structures, whether or not their resemblance is due to common ancestry.


Lower Molar Cheek Tooth Lower Tooth Wear Facet Chewing Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohlin, B. 1942. The fossil mammals from the Tertiary deposit of Tuben-buluk, Western Kansu. Part I. Insectivora and Lagomorpha. Palaeont. sinica (n.s.) C, 8a: 1–110.Google Scholar
  2. Butler, P. M. 1956. The ontogeny of molar pattern. Biol. Rev. 31: 30–70.CrossRefGoogle Scholar
  3. Butler, P. M. 1973. Molar wear facets of early Tertiary North American primates. Symp. 4th. int. Cong. Primatol. 3: 1–27.Google Scholar
  4. Butler, P. M. 1980. Functional aspects of the evolution of rodent molars. Palaeovertebrata Mém, Jubil. R. Lavocat: 249-262.Google Scholar
  5. Butler, P. M. 1982. Directions of evolution in the mammalian dentition. In: Problems of Phylogenetic Reconstruction, K. A. Joysey and A. E. Friday, eds., pp. 235–244, Academic Press. London.Google Scholar
  6. Butler, P. M. 1983. Evolution and mammalian dental morphology. J. Biol. buccale 11: 285–302.PubMedGoogle Scholar
  7. Gaunt, W. A. 1955. The development of the molar pattern of the mouse, Mus musculus. Acta anat. 24: 249–268.PubMedCrossRefGoogle Scholar
  8. Gaunt, W. A. 1961a. The presence of apical pits on the lower cheek teeth of the mouse. Acta anat. 44: 146–158.PubMedCrossRefGoogle Scholar
  9. Gaunt, W. A. 1961b. The development of the molar pattern of the golden hamster (Mesocricetus auratus W.), together with a reassessment of the molar pattern of the mouse (Mus musculus). Acta anat. 45: 219–251.PubMedCrossRefGoogle Scholar
  10. Harman, M. T. and Smith, A. 1936. Some observations on the development of the teeth of Cavia cobaya. Anat. Rec. 66: 99–106.CrossRefGoogle Scholar
  11. Harris, M. T. and Wood, A. E. 1969. A new genus of eomyid rodent from the Oligocene Ash Spring local fauna of Trans-Pecos Texas. Pearce-Sellards Ser. Tex. mem. Mus. 14: 1–7.Google Scholar
  12. Jacobs, L. L. 1977. A new genus of murid rodent from the Miocene of Pakistan and comments on the origin of the Muridae. Paleobios 25: 1–11.Google Scholar
  13. Jaeger, J. J. 1977. Les rongeurs du Miocéne moyen et supérieur du Maghreb. Palaeovertebrata 8: 1–166.Google Scholar
  14. Kay, R. F. and Hiiemae, K. M. 1974. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthrop. 40: 227–256.PubMedCrossRefGoogle Scholar
  15. Korth, W. W. 1984. Earliest Tertiary evolution and radiation of rodents in North America. Bull. Carneg. Mus. Nat. Hist. 24: 1–71.Google Scholar
  16. Lavocat, R. 1974. What is an hystricomorph? Symp. Zool. Soc. Lond. 34: 7–20.Google Scholar
  17. Li, C. K. 1977. Paleocene eurymyloids (Anagalida, Mammalia) of Qianshan, Anhui. Vert. Palasiat. 15: 103–118.Google Scholar
  18. McKenna, M. C. 1982. Lagomorph interrelationships. Geobios, mém. spec. 6: 213–223.CrossRefGoogle Scholar
  19. Miller, E. S. 1912. Catalogue of the Mammals of Western Europe in the Collection of the British Museum. British Museum, London.Google Scholar
  20. Monmignaut, C. 1963. Étude d’une anomalie de l’email des dents jugales chez des rongeurs nouveau-nés. Mammalia 27: 218–237.CrossRefGoogle Scholar
  21. Patterson, B. and Wood, A. E. 1982. Rodents from the Deseadean Oligocene of Bolivia and the relationships of the Caviomorpha. Bull. Mus. Comp. Zool. Harv. 149: 371–543.Google Scholar
  22. Petter, F. 1966. L’origine des muridés. Plan cricétin et plans murins. Mammalia 30: 205–225.Google Scholar
  23. Rensberger, J. M. 1973. An occlusion model for mastication and dental wear in herbivorous mammals. J. Paleont. 47: 515–528.Google Scholar
  24. Rensberger, J. M. 1975. Function in the cheek tooth evolution of some hypsodont geomyoid rodents. J. Paleont. 49: 10–22.Google Scholar
  25. Rensberger, J. M. 1978. Scanning electron microscopy of wear occlusal events in some small herbivores. In: Development, Function and Evolution of Teeth, P. M. Butler and K. A. Joysey, eds., pp. 415–438, Academic Press, London.Google Scholar
  26. Rensberger, J. M. 1982. Patterns of dental change in two locally persistent successions of fossil aplodontid rodents. In: Teeth: Form, Function and Evolution, B. Kurten, ed., pp. 333–349, Columbia University Press, New York.Google Scholar
  27. Santoné, P. 1935. Studien über den Aufbau, die Struktur und die Histogenese der Molaren der Saügetiere. I. Molaren von Cavia cobaya. Z. mikr. anat. Forsch. 37: 49–100.Google Scholar
  28. Schaub, S. 1938. Tertiäre und quartäre Murinae. Abh. Schweiz. Pal. Ges. 61: 1–38.Google Scholar
  29. Stehlin, H. G. and Schaub, S. 1951. Die Trigonodontie der simplicidentaten Nager. Schweiz. Pal. Abh. 67: 1–385.Google Scholar
  30. Tims, H. W. M. 1901. Tooth genesis in the Caviidae. J. Linn. Soc. (Zool.) 28: 261–290.CrossRefGoogle Scholar
  31. Tobien, H. 1974. Zur Gebissstruktur, Systematik und Evolution der Genera Amphilagus und Titanomys (Lagomorpha, Mammalia) aus. einigen Vorkommen im jüngeren Tertiär Mittel-und Westeuropas. Mainzer geomiss. Mitt. 3: 95–214.Google Scholar
  32. Wilkins, K. T. and Woods, C. A. 1983. Modes of mastication in pocket gophers. J. Mammal. 64: 636–641.CrossRefGoogle Scholar
  33. Winge, H. 1941. The Interrelationships of the Mammalian Genera. Vol. 2. C. A. Reitzels Forlag, Copenhagen.Google Scholar
  34. Wood, A. E. 1937. Parallel radiation among the geomyoid rodents. J. Mammal. 18: 171–176.CrossRefGoogle Scholar
  35. Wood, A. E. 1957. What, if anything, is a rabbit? Evolution 11: 417–425.CrossRefGoogle Scholar
  36. Wood, A. E. 1962. The early Tertiary rodents of the family Paramyidae. Trans. Am. Phil. Soc. 62: 1–261.Google Scholar
  37. Wood, A. E. 1974. The evolution of the Old World and New World hystricomorphs. Symp. zool. Soc. London. 34: 21–60.Google Scholar
  38. Woods, C. A. and Howland, E. B. 1979. Adaptive radiation of capromyid rodents: anatomy of the masticatory apparatus. J. Mammal. 60: 95–116.CrossRefGoogle Scholar
  39. Wortman, J. L. 1902. Studies of Eocene Mammalia in the Marsh Collection, Peabody Museum. Am. J. Sci. 13: 39–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • P. M. Butler
    • 1
  1. 1.Department of ZoologyRoyal Holloway CollegeEgham, SurreyEngland

Personalised recommendations