Growth of Muscle Tissue and Muscle Mass

  • Robert M. Malina


Muscle tissue consists of cylindrical, multinucleated cells called muscle fibers. A skeletal muscle contains many long fibers that have the ability to contract. This contractile property resides in specialized and interacting proteins localized in myofibrils making up the muscle fiber. Myofibrils have a transverse banding pattern that gives skeletal muscle its striated appearance. This banded pattern is produced by the alignment of a sequence of sarcomeres, the contractile units of the muscle fiber.


Muscle Mass Muscle Tissue Satellite Cell Lean Body Mass Vastus Lateralis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aherne, W., Ayyar, D. R., Clarke, P. A., and Walton, J. N., 1971, Muscle fibre size in normal infants, children and adolescents: An autopsy study, J. Neurol. Sci. 14: 171.CrossRefGoogle Scholar
  2. Andersen, P., and Henriksson, J., 1977, Capillary supply of the quadriceps femoris muscle of man: Adaptive response to exercise, J. Physiol. (London) 270: 677.Google Scholar
  3. Asmussen, E., 1962, Muscular performance, in: Muscle as a Tissue ( K. Rodahl and S. M. Horvath, eds.), pp. 161–175, McGraw-Hill, New York.Google Scholar
  4. Asmussen, E., and Heebell-Nielsen, Kr., 1955, A dimensional analysis of physical performance and growth in boys, J. Appt. Physiol. 7: 593.Google Scholar
  5. August, G. P., Grumbach, M. M., and Kaplan, S. L., 1972, Hormonal changes in puberty. III. Correlations of plasma testosterone, LH, FSH, testicular size and bone age with male pubertal development, J. Clin. Endocrinol. Metab. 34: 319.CrossRefGoogle Scholar
  6. Bailey, D. A., Bell, R. D., and Howarth, R. E., 1973, The effect of exercise on DNA and protein synthesis in skeletal muscle of growing rats, Growth 37: 323.Google Scholar
  7. Baker, P. T., Hunt, E. E., Jr., and Sen, T., 1958, The growth and interrelations of skinfolds and brachial tissues in man, Am. J. Phys. Anthropol. 16: 39.CrossRefGoogle Scholar
  8. Bell, R. D., Macdougall, J. D., Billeter, R., and Howald, H., 1980, Muscle fiber types and morphometric analysis of skeletal muscle in six-year-old children, Med. Sci. Sports Ex. 12: 28.Google Scholar
  9. Beunen, G., Ostyn, M., Renson, R., Simons, J., and Van Gerven, D., 1976, Skeletal maturation and physical fitness of girls aged 12 through 16, Hermes (Leuven) 10: 445.Google Scholar
  10. Beunen, G., Ostyn, M., Simons, J., Van Gerven, D., Swalus, P., and De Beul, G., 1978, A correlational analysis on skeletal maturity, anthropometric measures and motor fitness of boys 12 through 16, in: Biomechanics of Sports and Kinanthropometry ( F. Landry and W. A. R. Orban, eds.), pp. 343–349, Symposia Specialists, Miami, Florida.Google Scholar
  11. Beunen, G., Ostyn, M., Simons, J., Renson, R., and Van Gerven, D., 1980, Motorische vaardigheid somatische ontwikkeling en biologische maturiteit, Genees. Sport 13: 36.Google Scholar
  12. Beunen, G., Malina, R. M., Van’t Hof, M. A., Simons, J., Ostyn, M., Renson, R., and Van Gerven, D., Physical growth and motor performance of Belgian boys followed longitudinally between 12 and 19 years of age (submitted for publication).Google Scholar
  13. Billeter, R., Heizmann, C. W., Howald, H., and Jenny, E., 1981, Analysis of myosin light and heavy chain types in single human skeletal muscle fibers, Eur. J. Biochem. 116: 389.CrossRefGoogle Scholar
  14. Boileau, R. A., Horstman, D. H., Buskirk, E. R., and Mendez, J., 1972, The usefulness of urinary creatinine excretion in estimating body composition, Med. Sci. Sports 4: 85.Google Scholar
  15. Bouchard, C., 1966, Les différences individuelles en force musculaire statique, Mouvement 1: 49.Google Scholar
  16. Bowden, D. H., and Goyer, R. A., 1960, The size of muscle fibers in infants and children, Arch. PathoL 69: 188.Google Scholar
  17. Brooke, M. H., and Engel, W. K., 1969, The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children’s biopsies, Neurology (New York) 19: 591.CrossRefGoogle Scholar
  18. Brooke, M. H., and Kaiser, K. K., 1970, Muscle fiber types: How many and what kind?, Arch. Neurol. 23: 369.CrossRefGoogle Scholar
  19. Buchanan, T. A. S., and Pritchard, J. J., 1970, DNA content of tibialis anterior of male and female white rats measured from birth to 50 weeks, J. Anat. 107: 185.Google Scholar
  20. Burkinshaw, L., Hill, G. L., and Morgan, D. B., 1979, Assessment of the distribution of protein in the human body by in-vivo neutron activation analysis, in: Nuclear Activation Techniques in the Life Sciences 1978, pp. 787–797, International Atomic Energy Agency, Vienna.Google Scholar
  21. Burleigh, I. G., 1974, On the cellular regulation of growth and development in skeletal muscle, Biol. Rev. 49: 267.CrossRefGoogle Scholar
  22. Burmeister, W., 1965, Body cell mass as the basis of allometric growth functions, Ann. Paediatr. 204: 65.Google Scholar
  23. Campbell, C. J., Bonen, A., Kirby, R. L., and Belcastro, A. N., 1979, Muscle fiber composition and performance capacities of women, Med. Sci. Sports 11: 260.Google Scholar
  24. Carron, A. V., and Bailey, D. A., 1974, Strength development in boys from 10 through 16 years, Monogr. Soc. Res. Child Dev. 39 (4).Google Scholar
  25. Carron, A. V., Aitken, E. J., and Bailey, D. A., 1977, The relationship of menarche to the growth and development of strength, in: Frontiers of Activity and Child Health (H. Lavallée and R. J. Shephard, eds.), pp. 139143, Editions du Pélican, Quebec.Google Scholar
  26. Cheek, D. B., 1968, Human Growth, Lea and Febiger, Philadelphia.Google Scholar
  27. Cheek, D. B., 1975, Growth and body composition, in: Fetal and Postnatal Cellular Growth: Hormones and Nutrition ( D. B. Cheek, ed.), pp. 389–408, Wiley, New York.Google Scholar
  28. Cheek, D. B., and Hill, D. E., 1970, Muscle and liver cell growth: Role of hormones and nutritional factors, Fed. Proc. 29: 1503.Google Scholar
  29. Cheek, D. B., Holt, A. B., Hill, D. E., and Talbert, J. L., 1971, Skeletal muscle cell mass and growth: The concept of the deoxyribonucleic acid unit, Pediatr. Res. 5: 312.CrossRefGoogle Scholar
  30. Christensen, D. A., and Crampton, E. W., 1965, Effects of exercise and diet on nitrogenous constituents in several tissues of adult rats, J. Nutr. 86: 369.Google Scholar
  31. Clark, L. C., Thompson, H. L., Beck, E. I., and Jacobson, W., 1951, Excretion of creatine and creatinine by children, Am. J. Dis. Child. 81: 774.Google Scholar
  32. Clarke, H. H., 1971, Physical and Motor Tests in the Medford Boys’ Growth Study, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  33. Cohn, S. H., Vartsky, D., Yasumura, S., Sawitsky, A., Zanzi, I., Vaswani, A., and Ellis, K. J., 1980, Compartmental body composition based on total-body nitrogen, potassium, and calcium, Am. J. Physiol. 239: E524.Google Scholar
  34. Cohn, S. H., Vartsky, D., Yasumura, S., Vaswani, A. N., and Ellis, K. J., 1983, Indexes of body cell mass: Nitrogen versus potassium, Am. J. Physiol. 244: E305.Google Scholar
  35. Colling-Saltin, A.-S., 1978a, Enzyme histochemistry on skeletal muscle of human foetus, J. Neurol. Sci. 39: 169.CrossRefGoogle Scholar
  36. Colling-Saltin, A.-S., 1978b, Some quantitative biochemical evaluations of developing skeletal muscles in the human foetus, J. Neurol. Sci. 39: 187.CrossRefGoogle Scholar
  37. Colling-Saltin, A.-S. 1980, Skeletal muscle development in the human fetus and during childhood, in: Children and Exercise. IX (K. Berg and B. O. Eriksson, eds.), pp. 193–207, University Park Press, Baltimore.Google Scholar
  38. Costill, D. L., Daniels, J., Evans, W., Fink, W., Krahenbuhl, G., and Saltin, B., 1976a, Skeletal muscle enzymes and fiber composition in male and female track athletes, J. Appl. Physiol. 40: 149.Google Scholar
  39. Costill, D. L., Fink, W. J., and Pollock, M. L., 19766, Muscle fiber composition and enzyme activities of elite distance runners, Med. Sci. Sports 8: 96.Google Scholar
  40. Dickerson, J. W. T., and Widdowson, E. M., 1960, Chemical changes in skeletal muscle during development, Biochem. J. 74: 247.Google Scholar
  41. Durnin, J. V. G. A., 1969, Muscular and adipose tissue and the significance of increase in body weight with age, in: Physiopathology of Adipose Tissue ( J. Vague, ed.), pp. 387–389, Excerpta Medica, Amsterdam.Google Scholar
  42. Eriksson, B. 0., 1972, Physical training, oxygen supply and muscle metabolism in 11–13 year old boys, Acta Physiol. Scand. (Suppl.) 384.Google Scholar
  43. Eriksson, B. O., Gollnick, P. D., and Saltin, B., 1973, Muscle metabolism and enzyme activities after training in boys 11–13 years old, Acta Physiol. Scand. 87: 485.CrossRefGoogle Scholar
  44. Faust, M. S., 1977, Somatic development of adolescent girls, Monogr. Soc. Res. Child Dev. 42 (1).Google Scholar
  45. Fischman, D. A., 1972, Development of striated muscle, in: The Structure and Function of Muscle, Vol. I: Structure, Part 1 ( G. H. Boume, ed.), pp. 75–148, Academic Press, New York.Google Scholar
  46. Flynn, M. A., Clark, J. Reid, J. C., and Chase, G., 1975, A longitudinal study of total body potassium in normal children, Pediatr. Res. 9: 834.CrossRefGoogle Scholar
  47. Flynn, M. A., Murthy, Y., Clark, J., Comfort, G., Chase, G., and Bentley, A. E. T., 1970, Body composition of Negro and white children, Arch. Environ. Health 20: 604.CrossRefGoogle Scholar
  48. Forbes, G. B., 1972, Relation of lean body mass to height in children and adolescents, Pediatr. Res. 6: 32.CrossRefGoogle Scholar
  49. Forbes, G. B., 1974, Stature and lean body mass, Am. J. Clin. Nutr. 27: 595.Google Scholar
  50. Forbes, G. B., and Bruining, G. J., 1976, Urinary creati-nine excretion and lean body mass, Am. J. Clin. Nutr. 29: 1359.Google Scholar
  51. Fournier, M., Ricci, J., Taylor, A. W., Ferguson, R. J., Montpetit, R. R., and Chaitman, B. R., 1982, Skeletal muscle adaptation in adolescent boys: Sprint and endurance training and detraining, Med. Sci. Sports Ex. 14: 453.CrossRefGoogle Scholar
  52. Frasier, S. D., Gafford, F., and Horton, R., 1969, Plasma androgens in childhood and adolescence, J. Clin. Endocrinol. Metab. 29: 1404.CrossRefGoogle Scholar
  53. Frisancho, S. R., 1981, New norms of upper limb fat and muscle areas for assessment of nutritional status, Am. J. Clin. Nutr. 34: 2540.Google Scholar
  54. Garn, S. M., 1961, Radiographic analysis of body composition, in: Techniques for Measuring Body Composition (J. Bro2ek and A. Henschel, eds.), pp. 36–58, National Academy of Sciences—National Research Council, Washington, D.C.Google Scholar
  55. Garn, S. M., 1963, Human biology and research in body composition, Ann. N.Y. Acad. Sci. 110: 429.CrossRefGoogle Scholar
  56. Goldspink, G., 1972, Postembryonic growth and differentiation of striated muscle, in: The Structure and Function of Muscle. Vol. I: Structure, Part 1 ( G. H. Boume, ed.), pp. 179–236, Academic Press, New York.Google Scholar
  57. Gollnick, P. D., Armstrong, R. B., Saubert, C. W. IV, Piehl, K., and Saltin, B., 1972, Enzyme activity and fiber composition in skeletal muscle of untrained and trained men, J. Appl. Physiol. 33: 312.Google Scholar
  58. Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert, C. W. IV, Sembrowich, W. L., and Shepherd, R. E., 1973, Effect of training on enzyme activity and fiber composition of human skeletal muscle, J. Appl. Physiol. 34: 107.Google Scholar
  59. Gollnick, P. D., Timson, B. F., Moore, R. L., and Riedy, M., 1981, Muscular enlargement and number of fibers in skeletal muscles of rats, J. Appl. Physiol. 50: 936.Google Scholar
  60. Gollnick, P. D., Parsons, D., Riedy, M., and Moore, R. L., 1983, Fiber number and size in overloaded chicken anterior latissimus dorsi muscle, J. Appl. Physiol. 54: 1292.Google Scholar
  61. Gonyea, W. J., 1980, Muscle fiber splitting in trained and untrained animals, Ex. Sport Sci. Rev. 8: 19.Google Scholar
  62. Goss, R. J., 1966, Hypertrophy versus hyperplasia, Science 153: 16–15.CrossRefGoogle Scholar
  63. Green, H. J., Thomson, J. A., Daub, W. D., Houston, M. E., and Ranney, D. A., 1979, Fiber composition, fiber size and enzyme activities in vastus lateralis of elite athletes involved in high intensity exercise, Eur. J. Appl. Physiol. 41: 109.CrossRefGoogle Scholar
  64. Gurney, J. M., and Jelliffe, D. B., 1973, Arm anthropometry in nutritional assessments: Nomogram for rapid calculation of muscle circumference and cross-sectional muscle and fat areas, Am. J. Clin. Nutr. 26: 912.Google Scholar
  65. Hedberg, G., and Jansson, E., 1976, Skelettmuskelfiberkomposition. Kapacitet och intresse för olika fysiska aktiviteter bland elever i gymnasieskolan. Rapport 54, Pedagogiska Institute, Umeâ.Google Scholar
  66. Henriksson, K. G., 1979, Muscle histochemistry and muscle function, Acta Paediatr. Scand. (Suppl.) 283: 15.Google Scholar
  67. Hewitt, D., 1958, Sib resemblance in bone, muscle and fat measurements of the human calf, Ann. Human Genet. 22: 213.CrossRefGoogle Scholar
  68. Heymsfield, S. B., Arteago, C., McManus, C., Smith, J., and Moffitt, S., 1983, Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method, Am. J. Clin. Nutr. 37: 478.Google Scholar
  69. Heymsfield, S. B., McManus, C., Smith, J., Stevens, V., and Nixon, D. W., 1982a, Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area, Am. J. Clin. Nutr. 36: 680.Google Scholar
  70. Heymsfield, S. B., McManus, C., Stevens, V., and Smith, J., 1982b, Muscle mass: Reliable indicator of protein-energy malnutrition severity and outcome, Am. J. Clin. Nutr. 35: 1192.Google Scholar
  71. Hubbard, R. W., Smoake, J. A., Matther, W. T., Linduska, J. D., and Bowers, W. S., 1974, The effects of growth and endurance training on the protein and DNAGoogle Scholar
  72. content of rat soleus, plantaris, and gastrocnemius muscles, Growth 38:171.Google Scholar
  73. Hugg, J. E., and Malina, R. M., n.d., Estimation of body composition from arm anthropometry (in preparation).Google Scholar
  74. Hunt, E. E., Jr., and Heald, F. P., 1963, Physique, body composition, and sexual maturation in adolescent boys, Ann. N.Y. Acad. Sci. 110: 532.CrossRefGoogle Scholar
  75. Ingjer, F., 1979, Capillary supply and mitochondria) content of different skeletal muscle fiber types in untrained and endurance-trained men. A histochemical and ultra-structural study, Eur. J. Appl. Physiol. 40: 197.CrossRefGoogle Scholar
  76. Ivy, J. L., Withers, R. T., Van Handel, P. J., Elger, D. H., and Costill, D. L., 1980, Muscle respiratory capacity and fiber type as determinants of the lactate threshold, J. Appl. Physiol. 48: 523.Google Scholar
  77. Jansson, E., Sjödin, B., and Tesch, P., 1978, Changes in muscle fibre type distribution in man after physical training: A sign of fibre type transformation? Acta Physiol. Scand. 104: 235.CrossRefGoogle Scholar
  78. Jennekens, F. G. I., Tomlinson, B. E., and Walton, J. N., 1970, The sizes of the two main histochemical fibre types in five limb muscles in man: An autopsy study, J. Neurol. Sci. 13: 281.CrossRefGoogle Scholar
  79. Johnson, M. A., Polgar, J., Weightman, D., and Appleton, D., 1973, Data on the distribution of fibre types in thirty-six human muscles: An autopsy study, J. Neurol. Sci. 18: 111.CrossRefGoogle Scholar
  80. Johnston, F. E., 1981, Anthropometry and nutritional status, in: Assessing Changing Food Comsumption Patterns, pp. 252–264, National Research Council, National Academy Press, Washington, D.C.Google Scholar
  81. Johnston, F. E., and Malina, R. M., 1966, Age changes in the composition of the upper arm in Philadelphia children, Human Biol. 38: 1.Google Scholar
  82. Jones, H. E., 1949, Motor Performance and Growth, University of California Press, Berkeley.Google Scholar
  83. Komi, P. V., and Karlsson, J., 1978, Skeletal muscle fibre types, enzyme activities and physical performance in young males and females, Acta PhysioL Scand. 103: 210.CrossRefGoogle Scholar
  84. Komi, P. V., Viitasalo, J. H. T., Havu, M., Thorstensson, A., Sjödin, B., and Karlsson, J., 1977, Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes, Acta Physiol. Scand. 100: 385.Google Scholar
  85. Kraus, B. S., 1951, Male somatotypes among Japanese of northern Honshu, Am. J. Phys. Anthropol. 9: 347.CrossRefGoogle Scholar
  86. Kreisberg, R. A., Bowdoin, B., and Meador, C. K., 1970, Measurement of muscle mass in humans by isotopic dilution of creatinine-14C, J. Appl. Physiol. 28: 264.Google Scholar
  87. Krogman, W. M., 1971, The Manual and Oral Strengths of American White and Negro Children Ages 3–6 Years, Philadelphia Center for Research in Child Growth (see Malina and Roche, 1983 ).Google Scholar
  88. Krotkiewski, M., Aniansson, A., Grimby, G., Björntorp, P., and Sjöström, L., 1979, The effect of unilateral isokinetic strength training on local adipose and muscle tissue morphology, thickness and enzymes, Eur. J. Appl. Physiol. 42: 271.CrossRefGoogle Scholar
  89. Landing, B. H., Dixon, L. G., and Wells, T. R., 1974, Studies on isolated skeletal muscle fibers, Human Pathol. 5: 441.CrossRefGoogle Scholar
  90. Larsson, L., Sjödin, B., and Karlsson, J., 1978, Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years, Acta Physiol. Scand. 103: 31.CrossRefGoogle Scholar
  91. Lortie, G., Simoneau, J.-A., and Bouchard, C., 1985, Muscle fiber type distribution and enzyme activities in biological sibs, dizygotic and monozygotic twins, in: Human Genetics and Sport (R. M. Malina and C. Bouchard, eds.) Human Kinetics Publishers, Champaign, Illinois (in press).Google Scholar
  92. Lundberg, A., Eriksson, B. O., and Mellgren, G., 1979a, Metabolic substrates, muscle fibre composition and fibre size in late walking and normal children, Eur. J. Pediatr. 130: 79.CrossRefGoogle Scholar
  93. Lundberg, A., Eriksson, B. O., and Jansson, G., 1979b, Muscle abnormalities in coeliac disease: Studies on gross motor development and muscle fibre composition, size and metabolic substrates, Eur. J. Pediatr. 130: 93.CrossRefGoogle Scholar
  94. Malina, R. M., 1969, Quantification of fat, muscle and bone in man, Clin. Orthop. Rel. Res. 65: 9.Google Scholar
  95. Malina, R. M., 1973, Biological substrata, in: Comparative Studies of Blacks and Whites in the United States ( K. S. Miller and R. M. Dreger, eds.), pp. 53–123, Seminar Press, New York.Google Scholar
  96. Malina, R. M., 1974, Adolescent changes in size, build, composition and performance, Human BioL 46: 117.Google Scholar
  97. Malina, R. M., 1979, The effects of exercise on specific tissues, dimensions, and functions during growth, Stud. Phys. Anthrop. (Wroclaw) 5: 21.Google Scholar
  98. Malina, R. M., 1980, The measurement of body composition, in: Human Physical Growth and Maturation: Methodologies and Factors ( F. E. Johnston, A. F. Roche, and C. Susanne, eds.), pp. 35–59, Plenum Press, New York.CrossRefGoogle Scholar
  99. Malina, R. M., 1983, Human growth, maturation, and regular physical activity, Acta Med. AuxoL 15: 5.Google Scholar
  100. Malina, R. M., and Johnston, F. E., 1967a, Relations between bone, muscle and fat widths in the upper arms and calves of boys and girls studied cross-sectionally at ages 6 to 16 years, Human BioL 39: 211.Google Scholar
  101. Malina, R. M., and Johnston, F. E., 1967b, Significance of age, sex and maturity differences in upper arm composition, Res. Q. 38: 219.Google Scholar
  102. Malina, R. M., and Rarick, G. L., 1973, Growth, physique, and motor performance, in: Physical Activity: Human Growth and Development ( G. L. Rarick, ed.), pp. 125–153, Academic Press, New York.Google Scholar
  103. Malina, R. M., and Roche, A. F., 1983, Manual of Physical Status and Performance in Childhood, Vol. 2: Physical Performance, Plenum Press, New York.Google Scholar
  104. Metheny, E., 1941, The present status of strength testing for children of elementary school and preschool age, Res. Q. 12: 115.Google Scholar
  105. Montgomery, R. D., 1962, Growth of human striated muscle, Nature (London) 195: 194.CrossRefGoogle Scholar
  106. Moore, F. D., Olesen, K. H., McMurrey, J. D., Parker, H. V., Ball, M. R., and Boyden, C. M., 1963, The Body Cell Mass and Its Supporting Environment, W. B. Saunders, Philadelphia.Google Scholar
  107. Norris, A. H., Lundy, T., and Shock, N. W., 1963, Trends in selected indices of body composition in men between the ages of 30 and 80 years, Ann. N.Y. Acad. Sci. 110: 623.CrossRefGoogle Scholar
  108. Novak, L. P., 1963, Age and sex differences in body density and creatinine excretion of high school children, Ann. N.Y. Acad. Sci. 110: 545.CrossRefGoogle Scholar
  109. Novak, L. P., 1973, Total body potassium during the first year of life determined by whole-body counting of 40K, J. Nucl. Med. 14: 550.Google Scholar
  110. Nygaard, E., and Nielsen, E., 1978, Skeletal muscle fiber capillarization with extreme endurance training in man, in: Swimming Medicine IV ( B. Eriksson and B. Furberg, eds.), pp. 282–293, University Park Press, Baltimore.Google Scholar
  111. Pierson, R. N., Jr., Lin, D. H. Y., and Phillips, R. A., 1974, Total-body potassium in health: Effects of age, sex, height, and fat, Am. J. Physiol. 226: 206.Google Scholar
  112. Prince, F. P., Hikida, R. S., and Hagerman, F. C., 1976, Human muscle fiber types in power lifters, distance runners and untrained subjects, Pflügers Arch. 363: 19.CrossRefGoogle Scholar
  113. Prince, F. P., Hikida, R. S., and Hagerman, F. C., 1977, Muscle fiber types in women athletes and non-athletes, Pflügers Arch. 371: 161.CrossRefGoogle Scholar
  114. Rarick, G. L., and Oyster, N., 1964, Physical maturity, muscular strength, and motor performance of young school-age boys, Res. Q. 35: 523.Google Scholar
  115. Reichmann, H., and Pette, D., 1982, A comparative microphotometric study of succinate dehydrogenase activity levels in Type I, IIa and IIb fibres of mammalian and human muscles, Histochemistry 74: 27.CrossRefGoogle Scholar
  116. Reynolds, E. L., 1946, Sexual maturation and the growth of fat, muscle and bone in girls, Child Dev. 17: 121.CrossRefGoogle Scholar
  117. Reynolds, E. L., and Clark, L. C., 1947, Creatinine excretion, growth progress and body structure in normal children, Child Dev. 18: 155.CrossRefGoogle Scholar
  118. Saltin, B., and Gollnick, P. D., 1983, Skeletal muscle adaptability: Significance for metabolism and performance, in: Handbook of Physiology, Section 10, Skeletal muscle ( L. D. Peachey, sect. ed.), pp. 555–631, American Physiological Society, Bethesda, Maryland.Google Scholar
  119. Saltin, B., Henriksson, J., Nygaard, E., and Andersen, P., 1977, Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners, Ann. N.Y. Acad. Sci. 301: 3.CrossRefGoogle Scholar
  120. Scammon, R. E., 1923, A summary of the anatomy of the infant and child, in: Pediatrics (I. A. Abt, ed.), pp. 257444, W. B. Saunders, Philadelphia.Google Scholar
  121. Stolz, H. R., and Stolz, L. M., 1951, Somatic Development of Adolescent Boys, Macmillan, New York.Google Scholar
  122. Talbot, N. B., 1938, Measurement of obesity by the creatinine coefficient, Am. J. Dis. Child. 55: 42.Google Scholar
  123. Tanner, J. M., 1962, Growth at Adolescence,2nd ed., Blackwell Scientific Publications, Oxford.Google Scholar
  124. Tanner, J. M., 1964, The Physique of the Olympic Athlete, Allen & Unwin, London.Google Scholar
  125. Tanner, J. M., 1965, Radiographic studies of body composition in children and adults, Symp. Soc. Study Human Biol. 7: 211.Google Scholar
  126. Tanner, J. M., Hughes, P. C. R., and Whitehouse, R. H., 1981, Radiographically determined widths of bone, muscle and fat in the upper arm and calf from 3–18 years, Ann. Human Biol. 8: 495.CrossRefGoogle Scholar
  127. Tesch, P., Karlsson, J., and Sjödin, B., 1982, Muscle fiber type distribution in trained and untrained muscles of athletes, in: Exercise and Sport Biology ( P. Komi, ed.), pp. 79–83, Human Kinetics Publishers, Champaign, Illinois.Google Scholar
  128. Thorstensson, A., 1976, Muscle strength, fibre types and enzyme activities in man, Acta Physiol. Scand. (Suppl.) 443.Google Scholar
  129. Thorstensson, A., Larsson, L., Tesch, P., and Karlsson, J., 1977, Muscle strength and fiber composition in athletes and sedentary men, Med. Sci. Sports 9: 26.Google Scholar
  130. Viitasalo, J. T., and Komi, P. V., 1978, Force-time characteristics and fiber composition in human leg extensor muscles, Eur. J Appl Physiol. 40: 7.CrossRefGoogle Scholar
  131. Widdowson, E. M., 1969, Changes in the extracellular compartment of muscle and skin during normal and retarded development, Bibl. Nutr. Dieta 13: 60.Google Scholar
  132. Widdowson, E. M., 1970, Harmony of growth, Lancet 1: 901.CrossRefGoogle Scholar
  133. Wohlfart, G., 1937, Über das Vorkommen verschiedener Arten von Muskelfasern in der Skelettmuskulatur des Menschen und einiger Säugetiere, Acta Psych. Neurol. Scand. (Suppl.) 12.Google Scholar
  134. Young, C. M., Blondin, J., Tensuan, R., and Fryer, J. H., 1963, Body composition studies of “older” women, thirty to seventy years of age, Ann. N.Y. Acad. Sci. 110: 589.CrossRefGoogle Scholar
  135. Young, C. M., Bogan, A. D., Roe, D. A., and Lutwak, L., 1968, Body composition of pre-adolescent and adolescent girls. IV. Total body water and creatinine excretion, J. Am. Diet. Assoc. 53: 579.Google Scholar
  136. Zorab, P. A., 1969, Normal creatinine and hydroxyproline excretion in young persons, Lancet 2: 11–64.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Robert M. Malina
    • 1
  1. 1.Department of AnthropologyUniversity of TexasAustinUSA

Personalised recommendations