Skip to main content

Neuroanatomical Plasticity

Its Role in Organizing and Reorganizing the Central Nervous System

  • Chapter
Postnatal Growth Neurobiology

Abstract

“Plasticity” is a necessary concept for any theory of brain function. The most complex products of the brain, the ongoing cognitive behaviors of the individual, are remarkable for their flexibility and their capacity for reorganization in the face of changing circumstances. Since behavior is characterized by its adaptability, it follows that the neural machinery that creates it must possess analogous features. But what, in neurobiological terms, is the property of the brain that gives it this plasticity? Suggested answers to this question have come from all the branches of the neurosciences. The idea most commonly advanced is that changes in the effectiveness of synaptic transmission are responsible for phenomena such as learning and memory. Physiological research, much of it quite recent, has shown that lasting changes can be created in monosynaptic systems by very brief trains of repetitive stimulation (Bliss and Lomo, 1973; Dunwiddie and Lynch, 1978). Neurochemical studies have indicated that some of the subcellular systems related to the transmitter and its actions are modifiable (Baudry and Lynch, 1980; Lynch et al., 1982), and this certainly provides a means through which modification in the operation of neural circuits could be achieved. This chapter deals with still another mechanism by which the brain might gain its flexibility, specifically, that it is capable of modifying its very structure. This idea, which is quite old, has become the subject of intense interest in recent years, as newer methods (and the increased use of some more traditional procedures) have allowed anatomists to develop a clearer picture of the fine structure of neural tissue. Studies in the last decade indicate that the microanatomy of the neuron, as well as its dendritic ramifications and axonal arborization can be greatly modified and that under some circumstances the brain is capable of generating entirely new circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J., and Anderson, W. J., 1972, Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged x-radiation started at birth, J. Comp. Neurol. 146: 355–406.

    Article  CAS  Google Scholar 

  • Angevine, J. B., and Sidman, R. L., 1961, Autoradio-graphic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature (London) 192: 766–768.

    Article  Google Scholar 

  • Bates, C., and Killackey, H. P., 1984, The emergence of a discretely distributed pattern of corticospinal projection neurons, Dev. Brain Res. 13: 265–273.

    Article  Google Scholar 

  • Baudry, M., and Lynch, G., 1980, Regulation of hippocampal glutamate receptors: Evidence for the involvement of a calcium-activated protease, Proc. Natl. Acad. Sci. U.S.A. 11: 2298–2302.

    Article  Google Scholar 

  • Belford, G. R., and Killackey, H. P., 1979, The development of vibrissae representation in subcortical trigeminal centers of the neonatal rat, J. Comp. Neurol. 188: 63–74.

    Article  CAS  Google Scholar 

  • Bennett, E. L., 1976, Cerebral effects of differential experience and training, in: Neural Mechanisms of Learning and Memory ( M. R. Rosenzweig and E. L. Bennett, eds.), pp. 279–287, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Bernstein, M., and Bernstein, J. 1973, Regeneration of axons and synaptic complex formation rostral to the site of hemisection in the spinal cord of the monkey, Int. J. Neurosci. 5: 15–26.

    Article  CAS  Google Scholar 

  • Bliss, T., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol (London) 232: 331–356.

    CAS  Google Scholar 

  • Caceres, A., and Steward, 0., 1983, Dendritic reorganization in the denervated dentate gyms of the rat following entorhinal cortical lesions: A golgi and electron microscopic analysis, J. Comp. Neurol. 214: 387–403.

    Article  Google Scholar 

  • Chang, F.-L. F., and Greenough, W. T., 1982, Lateralized effects of monocular training on dendritic branching in adult split-brain rats, Brain Res. 232: 283–292.

    Article  CAS  Google Scholar 

  • Chang, F.-L. F., and Greenough, W. T., 1984, Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice, Brain Res. 309: 35–46.

    Article  CAS  Google Scholar 

  • Cunningham, T. J., Mohler, I. M., and Giordano, D. L., 1982, Naturally occurring neuron death in the ganglion cell layer of the neonatal rat: Morphology and evidence for regional correspondence with neuron death in superior colliculus, Dev. Brain Res. 2: 203–215.

    Article  Google Scholar 

  • D’Amato, C. J., and Hicks, S. P., 1978, Normal development and post-traumatic plasticity of corticospinal neurons in rats, Exp. Neurol. 60: 557–569.

    Article  Google Scholar 

  • Devor, M., and Schneider, G. E., 1975, Neuroanatomical plasticity: The principle of conservation of total axonal arborization, in: Aspects of Neural Plasticity! Plasticité Nerveuse ( F. Vital-Durand and M. Jeannerod, eds.), Vol. 43, pp. 191–200, INSERM, Paris.

    Google Scholar 

  • del Rio Hortega, P., 1932, Microglia, in: Cytology and Cellular Pathology of the Nervous System ( W. Penfield, ed.), Vol. 2, pp. 483–534, Hoeber, New York.

    Google Scholar 

  • Diamond, M. C., 1967, Extensive cortical depth measurements and neuron size increases in the cortex of environmentally enriched rats, J. Comp. Neurot. 131: 357364.

    Google Scholar 

  • Distel, H., and Hollander, H., 1980, Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits, J. Comp. Neurol. 192: 505–518.

    Article  CAS  Google Scholar 

  • Donatelle, J. M., 1977, Growth of the corticospinal tract and the development of placing reactions in the postnatal rat, J. Comp. Neurol. 175: 207–232.

    Article  CAS  Google Scholar 

  • Dunwiddie, T. V., and Lynch, G. S., 1978, Long term potentiation and depression of synaptic responses in the rat hippocampus: Localization and frequency dependency, J. Physiol. (London) 276: 353–367.

    CAS  Google Scholar 

  • Fifkova, E., 1970, The effect of unilateral deprivation on visual centers in rats, J. Comp. Neurol. 140: 431–438.

    Article  CAS  Google Scholar 

  • Finlay, B. L., and Slattery, M., 1983, Local differences in the amount of early cell death predict adult local specializations, Science 219: 1349–1351.

    Article  CAS  Google Scholar 

  • Fricke, R., and Cowan, W. M., 1977, An autoradiographic study of the development of the entorhinal and hippocampal afferents to the dentate gyrus of the rat, J. Comp. Neurol. 173: 231–250.

    Article  CAS  Google Scholar 

  • Gall, C. M., and Lynch, G., 1980, The regulation of fiber growth and synaptogenesis in the developing hippo-campus, in: Current Topics in Developmental Biology, Vol. 15: Neural Development, Part I ( R. K. Hunt, ed.), pp. 159–180, Academic Press, New York.

    Google Scholar 

  • Gall, C. M., and Lynch, G., 1981, Fiber architecture of the dentate gyrus following removal of the entorhinal cortex in rats of different ages: Evidence that two forms of axon sprouting occur after lesions in the immature rat, Neuroscience 6: 903–910.

    Article  CAS  Google Scholar 

  • Gall, C. M., McWilliams, R., and Lynch, G., 1979a, The effect of collateral sprouting on the density of innervation of normal target sites: Implications for theories on the regulation of the size of developing synaptic domains, Brain Res. 178: 37–47.

    Article  Google Scholar 

  • Gall, C. M., Rose, G., and Lynch, G., 1979b, Proliferative and migratory activities of glial cells in the partially deafferented hippocampus, J. Comp. Neurol. 183: 539–550.

    Article  CAS  Google Scholar 

  • Gall, C. M., McWilliams, R., and Lynch, G., 1980, Accelerated rates of synaptogenesis by “sprouting” afferents in the immature hippocampal formation, J. Comp. Neurol. 193: 1047–1061.

    Article  CAS  Google Scholar 

  • Globus, A., 1975, Brain morphology as a function of pre-synaptic morphology and activity, in: The Developmental Neuropsychology of Sensory Deprivation ( A. Riesen, ed.), pp. 9–91, Academic Press, New York.

    Google Scholar 

  • Globus, A., and Scheibel, A. B., 1967, Synaptic loci on parietal cortical neurons: Terminations of corpus callosum fibers, Science 156: 1127–1129.

    Article  CAS  Google Scholar 

  • Globus, A., Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C., 1973, Effects of differential experience on dendritic spine counts in rat cerebral cortex, J. Comp. Physiol. Psycho!. 82: 175–181.

    Article  CAS  Google Scholar 

  • Goodman, D. C., and Horel, J. A., 1966, Sprouting of optic tract projections in the brain stem of the rat, J. Comp. Neurol. 127: 71–88.

    Article  CAS  Google Scholar 

  • Green, E. J., Greenough, W. T., and Schlumpf, B. E., 1983, Effects of complex or isolated environments on cortical dendrites of middle-aged rats, Brain Res. 264: 233–240.

    Article  CAS  Google Scholar 

  • Greenough, W. T., 1976, Enduring brain effects of differential experience and training, in: Neural Mechanisms of Learning and Memory ( M. R. Rosenzweig and E. L. Bennett, eds.), pp. 255–278, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Greenough, W. T., and Volkman, F. R., 1973, Pattern of dendritic branching in occipital cortex of rats reared in complex environments, Exp. Neurol. 40: 491–504.

    Article  CAS  Google Scholar 

  • Greenough, W. T., Volkman, F. R., and Juraska, J. M., 1973, Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat, Exp. Neurol. 41: 371–378.

    Article  CAS  Google Scholar 

  • Gyllensten, L., Malmfors, T., and Narrlin, M. L., 1964, Effect of visual deprivation on the optic centers of growing and adult mice, J. Comp. NeuroL 122: 79–90.

    Article  Google Scholar 

  • Herndon, R., and Oster-Granet, M., 1975, Effect of granule cell destruction on development and maintenance of the Purkinje cell dendrite, in: Physiology and Pathology of Dendrites (G. W. Kreutzberg, ed.), pp. 361379, Raven Press, New York.

    Google Scholar 

  • Hicks, S., and D’Amato, C., 1970, Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats, Exp. Neurol. 29: 416–438.

    Article  CAS  Google Scholar 

  • Hirano, A., Dembitzer, H. M., and Jones, M., 1972, An electron microscopic study of cycasin induced cerebellar alterations, J. NeuropathoL Exp. Neurol. 31: 113–125.

    Article  CAS  Google Scholar 

  • Holloway, R. L., Jr., 1966, Dendritic branching: Some preliminary results of training and complexity in rat visual cortex, Brain Res. 2: 393–396.

    Article  Google Scholar 

  • Innocenti, G. M., 1981, Growth and reshaping of axons in the establishment of visual callosal connections, Science 212: 824–827.

    Article  CAS  Google Scholar 

  • Innocenti, G. M., and Frost, D. 0., 1979, Effects of visual experience on the maturation of the efferent system to the corpus callosum, Nature (London) 280: 231–234.

    CAS  Google Scholar 

  • Innocenti, G. M., and Frost, D. 0., 1980, The postnatal development of visual callosal connections in the absence of visual experience or the eyes, Exp. Brain Res. 39: 365–375.

    CAS  Google Scholar 

  • Innocenti, G. M., Fiore, L., and Caminiti, R., 1977, Exuberant projection into the corpus callosum from the visual cortex of newborn cats, Neurosci. Lett. 4: 237–242.

    Article  CAS  Google Scholar 

  • Ivy, G. 0., and Killackey, H. P., 198la, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp: Neurol. 195: 367–389.

    Google Scholar 

  • Ivy, G. 0., and Killackey, H. P., 1981b, Corticospinal and corticotectal neurons: Mechanisms of ontogenetic changes in distribution, Soc. Neurosci. Abs. 7: 178.

    Google Scholar 

  • Ivy, G. 0., and Killackey, H. P., 1982, Ontogenetic changes in the projections of neocortical neurons, J. Neurosci. 2: 735–743.

    CAS  Google Scholar 

  • Ivy, G. 0., and Lynch, G. S., 1982, Postnatal development of the corpus callosum and anterior commissure in the mouse, Soc. Neurosci. Abs. 8: 300.

    Google Scholar 

  • Ivy, G. 0., Akers, R. M., and Killackey, H. P., 1979, Differential distribution of callosal projection neurons in the neonatal and adult rat, Brain Res. 173: 532–537.

    Article  CAS  Google Scholar 

  • Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York.

    Google Scholar 

  • Jeffery, G., and Perry, V. H., 1982, Evidence for ganglion cell death during development of the ipsilateral retinal projection in the rat, Dev. Brain Res. 2: 176–180.

    Article  Google Scholar 

  • Jensen, K. F., and Altman, J., 1982, The contribution of late-generated neurons to the callosal projection in the rat: A study with prenatal x-irradiation, J. Comp. Neurol. 209: 113–122.

    Article  CAS  Google Scholar 

  • Juraska, J., Greenough, W. T., Elliott, C., Mack, K. J., and Berkowitz, R., 1980, Plasticity in adult rat visual cortex: An examination of several cell populations after differential rearing, Behay. Neural Biol. 29: 157–167.

    Article  CAS  Google Scholar 

  • Kemp, J. M., and Powell, T. P. S., 1971, The termination of fibers from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: A study with the Golgi method, Philos. Trans. R. Soc. London Ser. B. 262: 429–439.

    Article  CAS  Google Scholar 

  • Killackey, H. P., and Akers, R. M., 1980, Patterns of corticocortical fiber development in the neonatal rat, Soc. Neurosci. Abs. 6: 638.

    Google Scholar 

  • Killackey, H. P., and Belford, G. R., 1979, The formation of afferent patterns in the somatosensory cortex of the neonatal rat, J. Comp. Neurol. 183: 285–304.

    Article  CAS  Google Scholar 

  • Killackey, H. P., and Belford, G. R., 1980, Central correlates of peripheral pattern alterations in the trigeminal system of the rat, Brain Res. 183: 205–210.

    Article  CAS  Google Scholar 

  • Killackey, H. P., Ivy, G. 0., and Cunningham, T. J., 1978, Anomalous organization of SMI somatotopic map consequent to vibrissae removal in the newborn rat, Brain Res. 155: 136–140.

    CAS  Google Scholar 

  • Krech, P., Rosenzweig, M., and Bennett, E., 1963, Effects of complex environment and blindness on rat brain, Arch. Neurol. 8: 403–412.

    Article  Google Scholar 

  • Landmesser, L. T., 1980, The generation of neuromuscular specificity, Annu. Rev. Neurosci. 3: 279–302.

    Article  CAS  Google Scholar 

  • Lee, K., and Lynch, G., 1982, Axo-somatic synapses in the normal and x-irradiated dentate gyrus: Factors affecting the density of afferent innervation, Brain Res. 249: 51–56.

    Article  CAS  Google Scholar 

  • Lee, K., Stanford, E., Cotman, C., and Lynch, G., 1977, Ultrastructural evidence for bouton sprouting in the dentate gyrus of adult rats, Exp. Brain Res. 29: 475–485.

    CAS  Google Scholar 

  • Lee, K., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol. 44: 247–258.

    CAS  Google Scholar 

  • Lee, K. S., Oliver, M., Schottler, F., and Lynch, G., 1981, Electron microscopic studies of brain slices: The effects of high frequency stimulation on dendritic ultrastructure, in: Electrical Activity in Isolated CNS Preparations ( G. Kerkut, ed.), pp. 189–212, Academic Press, London.

    Google Scholar 

  • Leong, S. K., 1983, Localizing the corticospinal neurons in neonatal, developing and mature albino rat, Brain Res. 265: 1–9.

    Article  CAS  Google Scholar 

  • LeVay, S., Wiesel, T., and Hubel, D., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191: 1–51.

    Article  CAS  Google Scholar 

  • Loy, R., Lynch, G., and Cotman, C., 1977, Development of afferent lamination in the fascia dentata of the rat, Brain Res. 121: 229–243.

    Article  CAS  Google Scholar 

  • Lund, R. D., and Lund, J. S., 1971, Synaptic adjustment after deafferentation of the superior colliculus of the rat, Science 171: 804–807.

    Article  CAS  Google Scholar 

  • Lund, R. D., and Mitchell, D. E., 1979, Asymmetry in the visual callosal connections of strabismic cats, Brain Res. 167: 176–179.

    Article  CAS  Google Scholar 

  • Lund, R. D., Cunningham, T. S., and Lund, J. S., 1973, Modified optic projections after unilateral eye removal in young rats, Brain Behay. Evol. 8: 51–72.

    Article  CAS  Google Scholar 

  • Lund, R. D., Mitchell, D. E., and Henry, G. H., 1978, Squint-induced modification of callosal connections in cats, Brain Res. 144: 169–172.

    Article  CAS  Google Scholar 

  • Lynch, G., 1976, Neuronal and glial responses to the destruction of input: The “deafferentation syndrome,” in: Cerebrovascular Diseases (P. Scheinberg, ed.), pp. 209227, Raven Press, New York.

    Google Scholar 

  • Lynch, G., 1983, The cell biology of neuronal plasticity: Implications for mental retardation, in: Curative Aspects of Mental Retardiation: Biomedical and Behavioral Advances ( F. Menolascino, R. Neman, and J. Stark, eds.), pp. 99–109, Paul H. Brooks Publishing Co., Baltimore.

    Google Scholar 

  • Lynch, G., Matthews, D. A., Mosko, S., Parks, T., and Cotman, C. W., 1972, Induced acetylcholinesterase-rich layer in rat dentate gyrus following entorhinal lesions, Brain Res. 42: 311–318.

    Article  CAS  Google Scholar 

  • Lynch, G., Deadwyler, S., and Cotman, C. W., 1973a, Postlesion axonal growth produces permanent functional connections, Science 180: 1364–1366.

    Article  CAS  Google Scholar 

  • Lynch, G., Mosko, S., Parks, T., and Cotman, C., 1973b, Relocation and hyperdevelopment of the dentate gyrus commissural system after entorhinal lesions in immature rats, Brain Res. 50: 174–178.

    Article  CAS  Google Scholar 

  • Lynch, G., Stanfield, B., and Cotman, C. W., 1973c, Developmental differences in postlesion axonal growth in the hippocampus, Brain Res. 59: 155–168.

    Article  CAS  Google Scholar 

  • Lynch, G., Rose, G., Gall, C., and Cotman, C. W., 1975, The response of the dentate gyms to partial deafferentation, in: The Golgi Centennial Symposium ( M. Santini, ed.), pp. 305–317, Raven Press, New York.

    Google Scholar 

  • Lynch, G., Gall, C., Rose, G., and Cotman, C. W., 1976, Changes in the distribution of the dentate gyms associational system after unilateral and bilateral entorhinal lesions in adult rats, Brain Res. 110: 57–71.

    Article  CAS  Google Scholar 

  • Lynch, G., Gall, C., and Cotman, C., 1977, Temporal parameters of axon “sprouting” in the brain of the adult rat, Exp. Neurol. 54: 179–183.

    Article  CAS  Google Scholar 

  • Lynch, G., Halpain, S., and Baudry, M., 1982, Effects of high-frequency stimulation on glutamate receptor binding studied with an in vitro hippocampal slice preparation, Brain Res. 244: 101–111.

    Article  CAS  Google Scholar 

  • Matthews, D. A., Cotman, C., and Lynch, G., 1976, An electron microscopic study of lesion induced synaptogenesis in the dentate gyms of the adult rat. II. Reappearance of morphologically normal synaptic contacts, Brain Res. 115: 23–41.

    Article  CAS  Google Scholar 

  • McWilliams, J. R., and Lynch, G., 1979, Terminal proliferation in the partially deafferented dentate gyms: Time course for the appearance and removal of degeneration and the replacement of lost terminals, J. Comp. Neurol. 187: 191–198.

    Article  CAS  Google Scholar 

  • McWilliams, J. R., and Lynch, G., 1983, Rate of synaptic replacement in denervated rat hippocampus declines precipitously in the juvenile period to adulthood, Science 221: 572–574.

    Article  CAS  Google Scholar 

  • McWilliams, J. R., and Lynch, G., 1984, Synaptic density and axonal sprouting in rat hippocampus: Stability in adulthood and decline in late adulthood, Brain Res. 294: 152–156.

    Article  CAS  Google Scholar 

  • Moore, R. Y., Bjorklund, A., and Stenevi, U., 1971, Plastic changes in the adrenergic innervation of the rat septal area in response to denervation, Brain Res. 33: 1335.

    Article  Google Scholar 

  • O’Leary, D. D. M., Stanfield, B. B., and Cowan, W. M., 1981, Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons, Dev. Brain Res. 1: 607–617.

    Article  Google Scholar 

  • Parnavelas, J., Lynch, G., Brecha, N., Cotman, C., and Globus, A., 1974, Spine loss and regrowth in the hippocampus following deafferentation, Nature (London) 248: 71–73.

    Article  CAS  Google Scholar 

  • Purpura, D. P., and Hausepian, E. M., 1961, Morphological and physiological properties of chronically isolated immature neocortex, Exp. Neurol. 4: 377–401.

    Article  CAS  Google Scholar 

  • Raisman, G., 1969, Neuronal plasticity in the septal nuclei of the adult rat, Brain Res. 24: 25–48.

    Article  Google Scholar 

  • Raisman, G., and Field, P., 1973, A quantitative investigation of the development of collateral regeneration after partial deafferentation of the septal nuclei, Brain Res. 50: 241–264.

    Article  CAS  Google Scholar 

  • Rakic, P., 1976, Prenatal genesis of connections subserving occular dominance in the rhesus monkey, Nature (London) 261: 467–471.

    Article  CAS  Google Scholar 

  • Rakic, P., 1977, Prenatal development of the visual system in rhesus monkey, Phil. Trans. R. Soc. Lond. Ser. B. 278: 245–260.

    Article  CAS  Google Scholar 

  • Rakic, P., 1981, Development of visual centers in the primate brain depends on binocular competition before birth, Science 214: 928–929.

    Article  CAS  Google Scholar 

  • Rakic, P., and Riley, K. P., 1983a, Overproduction and elimination of retinal axons in the fetal rhesus monkey, Science 219: 1441–1444.

    Article  CAS  Google Scholar 

  • Rakic, P., and Riley, K. P., 1983b, Regulation of axon number in primate optic nerve by prenatal binocular competition, Nature (London) 305: 135–137.

    Article  CAS  Google Scholar 

  • Ramon y Cajal, S., 1959, Degeneration and Regeneration

    Google Scholar 

  • of the Nervous System (R. M. May, translation), reprinted by Hafner, New York.

    Google Scholar 

  • Rhoades, R. W., and Dellacroce, D. D., 1980, Neonatal enucleation induces an asymmetric pattern of visual callosal connections in hamsters, Brain Res. 202: 189–195.

    CAS  Google Scholar 

  • Rose, G., Lynch, G., and Cotman, C., 1976, Hypertrophy and redistribution of astrocytes in the deafferented dentate gyrus, Brain Res. Bull. 1: 87–93.

    Article  CAS  Google Scholar 

  • Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C., 1972, Chemical and anatomical plasticity of brain: Replications and extensions, in: Macromolecules and Behavior, 2nd ed. ( J. Gaito, ed.), pp. 205–277, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Rothblat, L., and Schwartz, M. L., 1979, The effect of monocular deprivation on dendritic spines in visual cortex of young and adult albino rats: Evidence for a sensitive period, Brain Res. 161: 156–161.

    Article  CAS  Google Scholar 

  • Ruttledge, L. T., 1976, Synaptogenesis: Effects of synaptic use, in: Neural Mechanisms of Learning and Memory (M. R. Rosenzweig and E. L. Bennett, eds.), pp. 329339, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Ruttledge, L. T., Wright, C., and Duncan, J., 1974, Morphological changes in pyramidal cells of mammalian neocortex associated with increased use, Exp. Neurol. 44: 209–228.

    Article  Google Scholar 

  • Ryugo, D., Ryugo, R., Globus, A., and Killacky, H., 1975, Increased spine density in auditory cortex following visual or somatic deafferentation, Brain Res. 90: 143–146.

    Article  CAS  Google Scholar 

  • Schapiro, S., and Vulkovich, K. R., 1970, Early experience effects upon cortical dendrites. A proposed model for development, Science 167: 292–294.

    Article  CAS  Google Scholar 

  • Schneider, G. E., 1970, Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters, Brain. Behay. Evo1. 3: 295–323.

    Article  CAS  Google Scholar 

  • Sengelaub, D. R., and Finlay, B. L., 1980, Retinal ganglion cell death during normal development in the Syrian Hamster, Soc. Neurosci. Abs. 6: 290.

    Google Scholar 

  • Shatz, C. J., 1979, Abnormal connections in the visual system of Siamese cats, Soc. Neurosci. Symp. 4: 121–141.

    Google Scholar 

  • Silver, J., Lorenz, S. E., Wahlsten, D., and Coughlin, J., 1982, Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways, J. Comp. Neurol. 210: 10–29.

    Article  CAS  Google Scholar 

  • Sotelo, C., Hillman, D., Zamora, A., and Llinas, R., 1975, Climbing fiber deafferentation: Its action on Purkinje cell dendritic spines, Brain Res. 98: 574–581.

    Article  CAS  Google Scholar 

  • Stanfield, B. B., O’Leary, D. D. M., and Fricks, C., 1982, Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurons, Nature (London) 298: 371–373.

    Article  CAS  Google Scholar 

  • Staubli, V., Gall, G., and Lynch, G., 1984, The distribution of the commissural-associational afferents of the dentate gyrus after perforant path lesions in one-dayold rats, Brain Res. 292: 156–159.

    Article  CAS  Google Scholar 

  • Stenevi, U., Bjorklund, A., and Moore, R. Y., 1972, Growth of intact central adrenergic axons in the denervated lateral geniculate body, Exp. Neurol. 35: 290–299.

    Article  CAS  Google Scholar 

  • Steward, O., Cotman, C. W., and Lynch, G., 1973, Reestablishment of electrophysiologically functional entorhinal cortical input to the dentate gyrus deafferented by ipsilateral entorhinal lesions: Innervation by the contralateral entorhinal cortex, Exp. Brain Res. 18: 396–414.

    Article  CAS  Google Scholar 

  • Steward, O., and Vinsant, S., 1983, Terminal proliferation and reactive synaptogenesis in the rat dentate gyru after entorhinal lesions. An electron microscopic stud) J. Comp. Neurol. 214: 370–386.

    Article  Google Scholar 

  • Uylings, H. B. M., Kuypers, K., Diamond, M. C., an Veltman, W. A. M., 1978, Effects of differential env ronments on plasticity of dendrites of cortical pyram dal neurons in adult rats, Exp. Neurol. 62: 658–677.

    Article  CAS  Google Scholar 

  • Valverde, F., 1971, Rate and extent of recovery from dark rearing in the visual cortex of the mouse, Brain Res. 33: 1–11.

    Article  CAS  Google Scholar 

  • Valverde, F., and Ruiz-Marcos, A., 1969, Dendritic spines in the visual cortex of the mouse. Introduction to a mathematical model, Exp. Brain Res. 8: 269–283.

    Article  CAS  Google Scholar 

  • Varon, C., and Saier, M., 1975, Culture techniques and glial-neuronal interrelationships in vitro, Exp. Neurol. 48:135–162. at

    Google Scholar 

  • Welker, C., 1976, Receptive fields of barrels in the somatosensory neocortex of the rat, J. Comp. Neurol. 166: 173–190.

    Article  CAS  Google Scholar 

  • West, J., Deadwyler, S., Cotman, C., and Lynch, G., 1975, Time-dependent changes in commissural field potentials in the dentate gyrus following lesions of the entorhinal cortex in adult rats, Brain Res. 97: 215–233.

    Article  CAS  Google Scholar 

  • Westrum, L., and Black, R., 1971, Fine structural aspects of the synaptic organization of the spinal trigeminal nucleus (pars interpolaris) of the cat, Brain Res. 25: 265–288.

    Article  CAS  Google Scholar 

  • White, L. E., Jr., and Westrum, L. E., 1964, Dendritic spine changes in prepyriform cortex following olfactory bulb lesions—Rat, Golgi method, Anat. Rec. 148: 410–411.

    Google Scholar 

  • Wise, S. P., and Jones, E. G., 1976, Organization and postnatal development of the commissural projection in the rat somatic sensory cortex, J. Comp. Neurol. 168: 313–343.

    Article  CAS  Google Scholar 

  • Wise, S. P., and Jones, E. G., 1978, Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178: 187–208.

    Article  CAS  Google Scholar 

  • Zimmer, J., 1973, Extended commissural and ipsilateral projections in postnatally dentorhinated hippocampus and fascia dentata demonstrated in rats by silver impregnation. Brain Res. 64: 293–311.

    Article  CAS  Google Scholar 

  • Zimmer, J., 1974, Proximity as a factor in the regulation of aberrant growth in postnatally deafferented fascia dentata, Brain Res. 72: 137–142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gall, C., Ivy, G., Lynch, G. (1986). Neuroanatomical Plasticity. In: Falkner, F., Tanner, J.M. (eds) Postnatal Growth Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0522-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0522-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0524-6

  • Online ISBN: 978-1-4899-0522-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics