Neuroembryology and the Development of Perceptual Mechanisms

  • Colwyn B. Trevarthen

Abstract

A considerable part of developmental brain research is concerned with how cellular mechanisms of perception are built. This chapter attempts a review of the field, but does not claim to cover all complex issues brought to light. There is good reason to be selective, as there are difficult conceptual problems. First, we must define perception so that this psychological function—the uptake of information by sensory systems—can be related to the many developmental processes that contribute to it. Somehow we must compare selective and organizing processes in perception with pattern-making and pattern-using systems in the growth of the entire behavioral system: body and brain.

Keywords

Visual Cortex Superior Colliculus Optic Tectum Striate Cortex Ocular Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adinolfi, A. M., 1971, The ultrastructure of synaptic junctions in developing cerebral cortex, Anat. Rec. 169:226. Adrian, E. D., 1946, The Physical Basis of Perception, Oxford University Press.Google Scholar
  2. Alegria, J., and Noirot, E., 1978, Neonate orientation behaviour towards the human voice, Early Hum. Dev. 1: 291–312.Google Scholar
  3. Allen, R. D., and Haberey, M., 1973, The behavior of amoebae, in: Behaviour of Micro-Organisms ( A. PérezMiravete, ed.), pp. 157–167, Plenum Press, London and New York.CrossRefGoogle Scholar
  4. Allman, J. Baker, J., Newsome, W. and Petersen, S., 1981, Visual topography and function: Cortical visual areas in the owl monkey, in: Multiple Visual Areas ( C. Woolsey, ed.), pp. 171–186, Humana Press, Clifton, New Jersey.CrossRefGoogle Scholar
  5. Alstermark, B., Eide, E., Gorska, T., Lundberg, A., and Pettersson, L.-G., 1984, Visually guided switching of forelimb target reaching in cats, Acta Physiol. Scand. 120: 151–153.CrossRefGoogle Scholar
  6. Altman, J., 1967, Postnatal growth and differentiation of the mammalian brain, with implications for a morphological theory of memory, in: The Neurosciences: A Study Program ( G. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), pp. 723–743, Rockefeller University Press, New York.Google Scholar
  7. Angevine, J. B., Jr., 1970, Critical cellular events in the shaping of neural centers, in: The Neurosciences: A Second Study Program ( F. O. Schmitt and T. Melnechuk, eds.), pp. 62–72, Rockefeller University Press, New York.Google Scholar
  8. Anker, R. L., and Cragg, B. G., 1975, Development of the extrinsic connections of the visual cortex of the cat, J. Comp. Neurol. 154: 29–42.CrossRefGoogle Scholar
  9. Annett, M. A., 1964, A model of the inheritance of handedness and cerebral dominance, Nature (London) 204: 59–60.CrossRefGoogle Scholar
  10. Anokhin, P. K., 1964, Systemogenesis as a general regulator of brain development, Prog. Brain Res. 9: 54–86.CrossRefGoogle Scholar
  11. Arey, L. B., 1965, Developmental Anatomy, 7th ed., W. B. Saunders, Philadelphia.Google Scholar
  12. Aslin, R. N., 1981, Development of smooth persuit in human infants, in: Eye Movements; Cognition and Visual Perception ( D. F. Fisher, R. A. Monty, and J. W. Senders, eds.), Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  13. Aslin, R. N., and Jackson, R. W., 1979, Accommodative-convergence in young infants: Development of a synergistic sensory-motor system, Can. J. Psychol. 33: 22 2231.Google Scholar
  14. Aström, K. E., 1967, On the early development of the isocortex in fetal sheep, Prog. Brain Res. 26: 1–59.CrossRefGoogle Scholar
  15. Atkinson, J., and Braddick, 0., 1979, New techniques for assessing vision, Child Care Health Dev. 5: 389–398.CrossRefGoogle Scholar
  16. Atkinson, J., Braddick, O., and Braddick, F., 1974, Acuity and contrast sensitivity of infant vision, Nature (London) 247: 403–404.CrossRefGoogle Scholar
  17. Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7: 46–64.CrossRefGoogle Scholar
  18. Axelrod, S., 1959, The Effects of Early Blindness: Performance of Blind and Sighted Children on Tactile and Auditory Tasks (Research Series, No. 7 ), American Foundation for the Blind, New York.Google Scholar
  19. Baker, R. E., 1972, Biochemical specification versus specific regrowth in the innervation of skin grafts in anurans, Nature New BioL 230: 235–237.CrossRefGoogle Scholar
  20. Baker, R. S., 1985, Horseradish peroxidase tracing of dorsal root ganglion afferents within fetal mouse spinal cord explants chronically exposed to tetrodotoxin, Brain Res. 334: 357–360.CrossRefGoogle Scholar
  21. Baker, R. S., Corner, M. A., and Habets, A. M. M. C., 1984, Effects of chronic suppression of bioelectrical activity on the development of sensory ganglion evoked responses in spinal cord explants, J. Neurosci. 4: 1187 1192.Google Scholar
  22. Balâzs, R., Lewis, P. D., and Patel, A. J., 1975, Effects of metabolic factors on brain development, in: Growth and Development of the Brain ( M. A. B. Brazier, ed.), pp. 83–115, Raven Press, New York.Google Scholar
  23. Ball, W., and Tronick, E., 1971, Infant responses to impending collision: Optical and real, Science 171: 818820.Google Scholar
  24. Banks, M. S., 1980, The development of visual accommodation during early infancy, Child Dev. 51: 646–666.CrossRefGoogle Scholar
  25. Banks, M. S., Aslin, R. N., and Letson, R. D., 1975, Critical period for the development of human binocular vision, Science 190: 675–677.CrossRefGoogle Scholar
  26. Barlow, H. B., 1975, Visual experience and cortical development, Nature (London) 258: 199–204.CrossRefGoogle Scholar
  27. Barlow, H. B., and Pettigrew, J. D., 1971, Lack of specificity of neurons in the visual cortex of young kittens, J. Physiol. (London) 218: 8P - 100 P.Google Scholar
  28. Barlow, H. B., Blakemore, C., and Pettigrew, J. D., 1967, The neural mechanism of binocular depth discrimination, J. Physiol. (London) 193: 327–342.Google Scholar
  29. Barondes, S. H., 1970, Brain glycomacromolecules in interneuronal recognition, in: The Neurosciences: A Second Study Program ( F. O. Schmitt, G. C. Quarton, and T. Melnechuk, eds.), pp. 744–760, Rockefeller University Press, New York.Google Scholar
  30. Bartelmez, G. W., 1922, The origin of the otic and optic primordia in man, J. Comp. Neurol. 34: 201–232.CrossRefGoogle Scholar
  31. Bartelmez, G. W., and Blount, M. P., 1954, The formation of neural crest from the primary optic vesicle in man, Carnegie Inst. Wash. Publ. 603, Contrib. EmbryoL 35: 55–71.Google Scholar
  32. Bartelmez, G. W., and Dekaban, A. S., 1962, The early development of the human brain, Carnegie Inst. Wash. Publ. 621, Contrib. Embryo!. 37: 15–32.Google Scholar
  33. Barth, L. G., 1953, Embryology, Dryden Press, New York.Google Scholar
  34. Bartlett, R. C., 1932, Remembering, Cambridge University Press, Cambridge.Google Scholar
  35. Basser, L. S., 1962, Hemiplegia of early onset and the faculty of speech with special reference to the effect of hemispherectomy, Brain 85: 427–460.CrossRefGoogle Scholar
  36. Bauer, J., and Held, R., 1975, Comparison of visual guided reaching in normal and deprived infant monkeys, J. Exp. Psycho!. Anim. Behay. Proc. 1:298–308. Baxter, B. L., 1966, Effect of visual deprivation during postnatal maturation on the electroencephalogram of the cat, Exp. Neurol. 14: 224–237.Google Scholar
  37. Beazley, L. D., 1975, Development of intertectal neuronal connections in Xenopus. The effects of contralateral transposition of the eye and of eye removal, Exp. Brain Res. 23: 505–518.Google Scholar
  38. Beazley, L. D., Keating, M. J., and Gaze, R. M., 1972, The appearance, during development, of responses in the optic tectum following visual stimulation of the ipsilateral eye in Xenopus laevis, Visual Res. 12: 407–410.Google Scholar
  39. Beintema, D. J., 1968, A Neurlogical Study of Newborn Infants. Spastics International-Heinemann, London. Bellugi, U., Poizner, H., and Klima, E. S., 1983, Brain organization for language: Clues from sign aphasia, Hum. NeurobioL 2: 155–170.Google Scholar
  40. Benowitz, L. I., and Karten, H. J., 1976, Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study, J. Comp. Neurol. 167:503–520. Bergstrom, R. M., 1969, Electrical parameters of the brain during ontogeny, in: Brain and Early Behavior: Development in the Fetus and Infant ( R. J. Robinson, ed.), pp. 15–41, Academic Press, New York.Google Scholar
  41. Berman, N., and Hunt, R. K., 1975, Visual projections to the optic tecta in Xenopus after partial extirpation of the embryonic eye, J. Comp. Neurol. 162: 23–42.CrossRefGoogle Scholar
  42. Bernstein, N., 1967, The Coordination and Regulation of Movements, Pergamon, Oxford.Google Scholar
  43. Berry, M., 1974, Development of neocortex of the rat, in: Studies in the Development of Behavior and the Nervous System ( G. Gottlieb, ed.). Vol. 2, pp. 19–115, Academic Press, New York.Google Scholar
  44. Berry, M., and Rogers, A. W., 1966, Histogenesis of mammalian neocortex, in: Evolution of the Forebrain ( R. Hassler and H. Stephan, eds.), pp. 197–205, Thieme, Stuttgart.Google Scholar
  45. Beverley, K. I., and Regan, D., 1980, Visual sensitivity to the shape and size of a moving object: Implications for models of object perception, Perception 9: 151–160.CrossRefGoogle Scholar
  46. Bjorklund, A., and Stenevi, U., 1979, Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system, Physiol. Rev. 59: 6 2100.Google Scholar
  47. Blakemore, C., 1974. Development of functional connexions in the mammalian visual system, Br. Med. Bull. 30: 152–157.Google Scholar
  48. Blakemore, C. B., and Cooper, G. F., 1970, Development of the brain depends on the visual environment, Nature (London) 228: 477–478.CrossRefGoogle Scholar
  49. Blakemore, C., and Van Sluyters, R. C., 1974, Reversal of the physiological effects of monocular deprivation in kittens. Further evidence for a sensitive period, J. Physiol. ( London ) 237: 195–216.Google Scholar
  50. Blakemore, C., and Vital-Durand, F., 1981, Postnatal development of the monkey’s visual system, in: The Fetus and Independent Life (Ciba Foundation Symposium 86), pp. 152–171, Pitman, London.Google Scholar
  51. Blakemore, C., and Vital-Durand, F., 1982, Development of contrast sensitivity by neurones in monkey cortex, J. Physiol. (London) 334: 18–19 P.Google Scholar
  52. Blakemore, C. B., Garey, L. J., and Vital-Durand, F., 1981, Orientation preferences in the monkey’s visual cortex, J. Physiol. (London) 319: 78 P.Google Scholar
  53. Blakemore, C., Vital-Durand, F., and Garey, L. J., 1981, Recovery from monocular deprivation in the monkey. I. Reversal of physiological effects in the visual cortex, Proc. R. Soc. Lond. B 213: 399–423.CrossRefGoogle Scholar
  54. Boothe, R. G., Williams, R. A., Kiorpes, L., and Teller, D. Y., 1980, Development of contrast sensitivity in infant Macaca nemestrina monkeys, Science 208: 1290 1292.Google Scholar
  55. Bornstein, M. H., 1975, Qualities of colour vision in infancy, J. Exp. Child Psycho!. 19: 401–419.CrossRefGoogle Scholar
  56. Böving, B. G., 1965, Anatomy of reproduction, in: Obstetrics, 13th ed. ( J. P. Greenhill, ed.), pp. 8–23, W. B. Saunders, Philadelphia.Google Scholar
  57. Bower, T. G. R., 1974, Development in Infancy, W. H. Freeman, San Francisco.Google Scholar
  58. Bower, T. G. R., 1978, Perceptual development: Object and space, in: Handbook of Perception ( E. C. Carterette and M. P. Friedman, eds.), Vol. 8, pp. 83–103, Academic Press, New York.Google Scholar
  59. Braddick, O., and Atkinson, J., 1979, Accommodation and acuity in the human infant, in: Developmental Neurobiology of Vision ( R. D. Freedman, ed.), pp. 279–290, NATO Advanced Study Institutes Series, Plenum Press, New York.Google Scholar
  60. Brazelton, T. B., Tronick, E., Adamson, L., Als, H., and Wise, S., 1975, Early mother-infant reciprocity, in: Parent-Infant Interaction, Ciba Foundation Symposium, No. 33, New Series ( M. O’Connor, ed.), pp. 137–154, Elsevier-Excerpta Medica-North Holland, New York.Google Scholar
  61. Brinkman, J., and Kuypers, H. G. J. M., 1973, Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey, Brain 96: 653–674.CrossRefGoogle Scholar
  62. Bronson, G., 1974, The postnatal growth of visual capacity, Child Dev. 45: 873–890.CrossRefGoogle Scholar
  63. Bronson, G. W., 1982, The Scanning Patterns of Human Infants: Implications for Visual Learning, Ablex, Norwood, New Jersey.Google Scholar
  64. Bruner, J. S., 1975, Ontogenesis of speech acts, J. Child Lang. 2: 1–19.CrossRefGoogle Scholar
  65. Buisseret, P., and Gary-Bobo, E., 1979, Development of visual cortical orientation specificity after dark rearing: Role of extraocular proprioception, Neurosci. Lett. 13: 259–263.CrossRefGoogle Scholar
  66. Bunt, S. M., 1982, Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish, J. Comp. Neurol. 206: 209–226.Google Scholar
  67. Busnel, M.-C., and Grenier-Deferre, C., 1983, And what of fetal audition, in: The Behavior of Human Infants ( A. Oliverio and M. Zappella, eds.), pp. 93–126. Plenum Press, New York.CrossRefGoogle Scholar
  68. Carey, S., and Diamond, R., 1980, Maturational determination of the developmental course of face encoding, in: Biological Studies of Mental Processes ( D. Caplan, ed.), pp. 60–93, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  69. Carmichael, L., 1926, The development of behavior in vertebrates experimentally removed from the influence of external stimulation, Psycho!. Rev. 33: 51–58.CrossRefGoogle Scholar
  70. Changeux, J.-P., 1979, Molecular interactions in adult and developing neuromuscular functions, in: The Neurosciences: Fourth Study Program, pp. 749–778, M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  71. Changeux, J.-P., and Danchin, A., 1976, Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks, Nature (London) 264: 705–712.CrossRefGoogle Scholar
  72. Changeux, J.-P., Courrège, P., and Danchin, A., 1973, A theory of the epigenesis of neuronal networks by selective stabilization of synapses, Proc. Natl. Acad. Sci. U.S.A. 70: 2974–2978.Google Scholar
  73. Chi, J. G., Dooling, E. C., and Gillies, F. H., 1977, Gyral development of the human brain, Ann. Neurol. 1: 8693.CrossRefGoogle Scholar
  74. Chow, K. L., and Steward, D. L., 1972, Reversal of structural and functional effects of long-term visual deprivation in cats, Exp. Neurol. 34: 409–433.CrossRefGoogle Scholar
  75. Chung, S. H., and Cooke, J., 1975, Polarity of structure and of ordered nerve connections in the developing amphibian brain, Nature (London) 258: 126–132.CrossRefGoogle Scholar
  76. Chung, S. H., and Cooke, J., 1978, Observations on the formation of the brain and of nerve connections following embryonic manipulation of the amphibian neural tube, Proc. R. Soc. Lond. B 201: 335–373.CrossRefGoogle Scholar
  77. Chung, S. H., Keating, M. H., and Bliss, T. V. P., 1974, Functional synaptic relations during the development of the retino-tectal projection in amphibians, Proc. R. Soc. Lond. B 187: 449–459.Google Scholar
  78. Clark, P. G. H., Ramachandran, V. S., and Whitteridge, D., 1979, The development of the binocular depth cells in the secondary visual cortex of the lamb, Proc. R. Soc. Lond. B 204: 455–465.Google Scholar
  79. Coghill, G. E., 1924, Correlated anatomical and physiological studies of the growth of the nervous system of Amphibia. IV. Rates of proliferation and differentiation in the central nervous system of Amblystoma, J. Comp. Neurol. 37: 71–120.Google Scholar
  80. Coghill, E. G., 1929, Anatomy and the Problem of Behavior, Cambridge University Press, London.Google Scholar
  81. Conel, J. LeRoy, 1939–1963, The Postnatal Development of the Human Cerebral Cortex, Vols. I-VI, Harvard University Press, Cambridge, Massachusetts.369Google Scholar
  82. Constantine-Paton, M., 1983, Position and proximity in the development of maps and stripes, Trends Neurosci. 6 (1): 32–36.CrossRefGoogle Scholar
  83. Constantine-Paton, M., and Law, M. I., 1978, Eye-specific termination bands in tecta of three-eyed frogs, Science 202: 639–641.Google Scholar
  84. Cook, J. E., 1982, Errant optic axons in the normal goldfish retina reach retinotopic tectal sites, Brain Res. 250: 154.CrossRefGoogle Scholar
  85. Cook, J., and Gaze, R. M., 1983, The positional coding system in the early eye rudiment of Xenopus laevis and its modification after grafting operations, J. Emb. Exp. Morphol. 77: 53–71.Google Scholar
  86. Cook, J. E., and Horder, T. J., 1974, Interactions between optic fibers in their regeneration to specific sites in the goldfish tectum, J. Physiol. (London) 241: 89–90.Google Scholar
  87. Corballis, M. C., and Beale, I. L., 1976, The Psychology of Left and Right, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  88. Cowan, W. M., Martin, A. H., and Wenger, E., 1968, Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle, J. Exp. Zoo!. 169: 71–92.CrossRefGoogle Scholar
  89. Cragg, B. G., 1972, The development of synapses in the cat visual cortex, Invest. Ophthalmol. 11:377–385.Google Scholar
  90. Cragg, B. G., 1975, The development of synapses in the visual system of the cat, J. Comp. Neurol. 160:147–166.Google Scholar
  91. Craik, K. J. W., 1943, The Nature of Explanation, Cambridge University Press, Cambridge.Google Scholar
  92. Crossland, W. J., Cowan, W. M., Rogers, L. A., and Kelly, J. P., 1974, The specification of the retinotectal projection in the chick, J. Comp. Neurol. 155:127–164.Google Scholar
  93. Crossland, W. J., Cowan, W. M., and Rogers, L. A., 1975, Studies on the development of the chick optic tectum. IV. An autoradiographic study of the development of retinotectal connections, Brain Res. 91:1–23.Google Scholar
  94. Cynader, M., and Regan, D., 1982, Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity, Vision Res. 22: 967–982.CrossRefGoogle Scholar
  95. Daniel, P. M., and Whitteridge, D., 1961, The representation of the visual field on the cerebral cortex in monkeys, J. Physiol. (London) 159: 203–221.Google Scholar
  96. Daniels, J. D., and Pettigrew, J. D. 1976, Development of neuronal responses in the visual system of cats, in: Studies on the Development of Behavior and the Nervous System (G. Gottlieb, ed.), Vol. 3, pp. 195–232, Academic Press, New York.Google Scholar
  97. De Casper, A. J., and Fifer, W. P., 1980, Of human bonding: Newborns prefer their mothers’ voices, Science 208: 1175–1176.Google Scholar
  98. De Long, G. R., and Coulombre, A. J., 1965, Development of the retinotectal projection in the chick embryo, Exp. Neurol. 13: 351–363.CrossRefGoogle Scholar
  99. De Long, G. R., and Sidman, R. L., 1962, Effects of eye removal at birth on histogenesis of the mouse superior colliculus: An autoradiographic analysis with tritiated thymidine, J. Comp. Neurol. 118: 205–224.CrossRefGoogle Scholar
  100. Dennis, M., 1980, Language acquisition in a single hemisphere: Semantic organization, in: Biological Studies of Mental Processes ( D. Caplan, ed.), pp. 159–185, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  101. Dennis, M., 1980, Language in a congenitally acallosal brain, Brain Lang. 12: 33–53.CrossRefGoogle Scholar
  102. Dennis, M., 1983, The developmentally dyslexic brain and the written language skills of children with one hemisphere, in: Neuropsychology of Language, Reading and Spelling ( U. Kirk, ed.), pp. 185–208, Academic Press, New York.Google Scholar
  103. Evolution of the neo-cortexCrossRefGoogle Scholar
  104. Dichgans, J. and Brandt, Th., 1974, The psychophysics of visually induced perception of self-motion and tilt, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 123–129, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  105. Dixon, J. S., and Cronly-Dillon, J. R., 1972, The fine structure of the developing retina in Xenopus laevis, J. Embryo!. Exp. Morphol. 28: 659–666.Google Scholar
  106. Dobbing, J., 1981, The later development of the brain and its vulnerability, in: Scientific Foundations of Paediatrics, 2nd ed. (J. A. Davis and J. Dobbing, eds.), pp. 744–759, Heinemann Medical Books, London.Google Scholar
  107. Dobbing, J., and Smart, J. L., 1974, Vulnerability of developing brain and behavior, Br. Med. Bull. 30: 164168.Google Scholar
  108. Drager, U. C., 1975, Receptive fields of single cells and topography in mouse visual cortex, J. Comp. Neurol. 160: 269–290.CrossRefGoogle Scholar
  109. Drager, U. C., and Hubel, D. H., 1975, Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input, Nature (London) 253: 203–204.CrossRefGoogle Scholar
  110. Dreyer, J., 1955, Early learning and the perception of space, Am. J. Psycho!. 68: 605–614.Google Scholar
  111. Dreyfus-Brisac, C., 1967, Ontogénèse du sommeil chez le prémature humain: Etude polygraphique, in: Regional Development of the Brain in Early Life ( A. Minkowski, ed.), pp. 437–457, Blackwell, Oxford.Google Scholar
  112. Duffy, F. H., Snodgrass, S. R., Burchfiel, J. L., and Conway, J. L., 1976, Bicuculline reversal of deprivation amblyopia in the cat, Nature (London) 260: 256257.Google Scholar
  113. Dunnett, S. B., Björklund, A., and Stenevi, U., 1983, Dopamine-rich transplants in experimental parkinsonism, Trends Neurosci. 6: 266–275.CrossRefGoogle Scholar
  114. Eimas, P., Sigueland, E., Jusczyr, P., and Vigorito, J., 1971, Speech perception in infants, Science 171: 303306.Google Scholar
  115. Eisenberg, R. B., 1975, Auditory Competence in Early Life: The Roots of Communicative Behavior, University Park Press, Baltimore.Google Scholar
  116. Evans, E. F., 1974, Neural processes for the detection of acoustic patterns and for sound localization, in: The Neurosciences: Third Study Program ( F. O. Schmitt and G. Quarton, eds.), pp. 131–145, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  117. Falkner, F., 1966, Human Development, W. B. Saunders, Philadelphia.Google Scholar
  118. Fantz, R. L., 1963, Pattern vision in newborn infants, Science 140: 296–297.CrossRefGoogle Scholar
  119. Fantz, R. L., 1965, Ontogeny of perception, in: Behavior of Non-human Primates: Modern Research Trends ( A. M. Schrier, H. F. Harlow, and F. Stollnitz, eds.), Vol. II, pp. 365–403, Academic Press, New York.Google Scholar
  120. Fawcett, J. W., 1981, How axons grow down the Xenopus optic nerve, J. Embryo!. Exp. Morpho!. 65:219–233. Fawcett, J. W., and Gaze, R. M., 1982, The retino-tectal fibre pathways from normal and compound eyes in Xenopus, J. Embryo!. Exp. Morpho!. 72: 19–37.Google Scholar
  121. Fawcett, J. W., and Willshaw, D. J., 1982, Compound eyes project stripes on the optic tectum in Xenopus, Nature (London) 296: 350–352.CrossRefGoogle Scholar
  122. Field, T. M., Woodson, R., Greenberg, R., and Cohen, D., 1982, Discrimination and imitation of facial expressions by neonates, Science 218: 179–181.CrossRefGoogle Scholar
  123. Finlay, B. L., Schneps, S. E., and Schneider, G. E., 1979, Orderly compression of the retinotectal projection following partial tectal ablation in newborn hamster, Nature (London) 280: 153–155.CrossRefGoogle Scholar
  124. Finlay, B. L., Schneps, S. E., Wilson, K. G., and Schneider, G. E., 1978, Topography of visual and somatosensory projections to the superior colliculus of the golden hamster, Brain Res. 142: 223–235.CrossRefGoogle Scholar
  125. Finlay, B. L., Wilson, K. G., and Schneider, G. E., 1979, Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: Topography and functional capacity, J. Comp. Neurol. 183: 721–740.CrossRefGoogle Scholar
  126. Flandrin, J. M., and Jeannerod, M., 1975, Superior colliculus: Environmental influences on the development of directional responses in the kitten, Brain Res. 89: 348352.Google Scholar
  127. Flechsig, P., 1901, Developmental (myelogenetic) localization of the cerebral cortex in the human subject, Lancet 2: 1027–1029.CrossRefGoogle Scholar
  128. Fodor, J. A., Garrett, M. F., and Brill, S. L., 1975, Pi Ka pu: The perception of speech sounds by prelinguistic infants, Percept. Psychophysiol. 18: 74–78.CrossRefGoogle Scholar
  129. Fraiberg, S., 1974, Blind infants and their mothers: An examination of the sign system, in: The Effect of the Infant on Its Caregiver ( M. Lewis and L. A. Rosenblum, eds.), pp. 215–232, Wiley, New York.Google Scholar
  130. Fraiberg, S., 1976, Development of human attachment in infants blind from birth, Merrill-Palmer Q. 21:315–334. Fraser, S. E., and Hunt, R. K., 1980, Retinotectal specificity: Models and experiments in search of a mapping function, Annu. Rev. Neurosci. 3: 319–352.Google Scholar
  131. Freedman, D. G., 1964, Smiling in blind infants and the issue of innate vs. acquired, J. Child Psycho!. Psychiatry 5: 171–184.Google Scholar
  132. Frégnac, Y., Trotter, Y., Bienen Stock, E., Buisseret, P., Gary-Bobo, E., and Imbert, M., 1981, Effect of neonatal unilateral enucleation on the development of orientation selectivity in the primary visual cortex of normally and dark-reared kittens, Exp. Brain Res. 42: 453–466.Google Scholar
  133. French, V., Bryant, P. J., and Bryant, S. V., 1976, Pattern regulation in epimorphic fields, Science 193:969–981. Friedman, S. L., and Sigman, M. (eds.), 1981, Preterm Birth and Psychological Development: Psychological Needs of Infants Born Preterm, Academic Press, New York.Google Scholar
  134. Frost, D. O., and Schneider, G. E., 1979, Plasticity of retinofugal projections after partial lesions of the retina in newborn Syrian hamster, J. Comp. Neurol. 185: 517568.Google Scholar
  135. Galaburda, A. M., 1983, Definition of the anatomical phenotype, in: Genetic Aspects of Speech and Language Disorders ( C. L. Ludlow and J. A. Cooper, eds.), pp. 7184, Academic Press, New York.Google Scholar
  136. Galaburda, A. M., Le May, M., Kemper, T. L., and Geschwind, N., 1978, Right-left asymmetries in the brain, Science 199: 852–856.CrossRefGoogle Scholar
  137. Ganz, L., 1975, Orientation in visual space by neonates and its modification by visual deprivation, in: The Developmental Neuropsychology of Sensory Deprivation ( A. H. Riesen, ed.), pp. 169–210, Academic Press, New York.Google Scholar
  138. Ganz, L., 1978, Sensory deprivation and visual discrimination, in: Handbook of Sensory Physiology, (H. Teuber, ed.), Vol. VIII, Springer-Verlag, Berlin.Google Scholar
  139. Ganz, L., and Fitch, M., 1968, The effect of visual deprivation on perceptual behavior, Exp. Neurol. 22: 638660.Google Scholar
  140. Ganz, L., Fitch, M., and Satterberg, J. A., 1968, The selective effect of visual deprivation on receptive field shape determined neurophysiologically, Exp. Neurol. 22: 614–637.CrossRefGoogle Scholar
  141. Ganz, L., Hirsch, H. V. B., and Bliss-Tieman, S., 1972, The nature of perceptual deficits in visually deprived cats, Brain Res. 44: 547–568.CrossRefGoogle Scholar
  142. Gaze, R. M., 1970, Formation of Nerve Connections, Academic Press, New York.Google Scholar
  143. Gaze, R. M., 1974, Neuronal specificity, Br. Med. Bull. 30: 116–121.Google Scholar
  144. Gaze, R. M., and Fawcett, J. W., 1983, Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions, J. Embryo!. Exp. Morpho!. 73: 17–38.Google Scholar
  145. Gaze, R. M., and Grant, P., 1978, The diencephalic course of regenerating retinotectal fibres in Xenopus tadpoles, J. Embryo!. Exp. Morpho!. 44: 201–216.Google Scholar
  146. Gaze, R. M., and Hope, R. A., 1976, The formation of continuously ordered mappings, Prog. Brain Res. 45: 327 2016–357.CrossRefGoogle Scholar
  147. Gaze, R. M., and Jacobson, M., 1962, The projection of the binocular visual field on the optic tecta of the frog, Q. J. Exp. Physiol. 47: 273–280.Google Scholar
  148. Gaze, R. M., and Keating, M. J., 1972, The visual system and “neuronal specificity,” Nature (London) 237:375379.Google Scholar
  149. Gaze, R. M., and Sharma, S. C., 1970, Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibers, Exp. Brain Res. 10:171–181.Google Scholar
  150. Gaze, R. M., Jacobson, M., and Szekely, G., 1963, The retinotectal projection in Xenopus with compound eyes, J. Physiol. (London) 165: 484–499.Google Scholar
  151. Gaze, R. M., Keating, M. J., Szekely, G., and Beazley, L., 1970, Binocular interaction in the formation of specific intertectal neuronal connections, Proc. R. Soc. Lond B 175: 107–147.CrossRefGoogle Scholar
  152. Gaze, R. M., Keating, M. J., and Chung, S. H., 1974, The evolution of the retinotectal map during development in Xenopus, Proc. R. Soc. Lond. B 185: 301–330.CrossRefGoogle Scholar
  153. Gaze, R. M., Feldman, J. D., Cooke, J., and Chung, S.-H., 1979a, The orientation of the visuotectal map in Xenopus: Developmental aspects, J. Emb. Exp. Morphol. 53: 39–66.Google Scholar
  154. Gaze, R. M., Keating, M. J., Ostberg, A., and Chung, S.-H., 1979b, The relationship between retinal and tectal growth in larvae Xenopus: Implications for the development of the retino-tectal projection, J. Embryol. Exp. Morphol. 53: 103–143.Google Scholar
  155. Gazzaniga, M. S., and Sperry, R. W., 1967, Language after section of the cerebral commissures, Brain 90: 13 1148.Google Scholar
  156. Geschwind, N., 1974, The anatomical basis of hemispheric differentiation, in: Hemisphere Function in the Human Brain (S. J. Dimond and J. G. Beaumont, eds.), Elek Science, London.Google Scholar
  157. Geschwind, N., 1982, Autoimmunity in left-handers, Science 215: 141–146.Google Scholar
  158. Geschwind, N., and Behan, P., 1982, Left-handedness: Association with immune disease, migraine and developmental learning disorder, Proc. Natl. Acad. Sci. U.S.A. 79: 5097–5100.CrossRefGoogle Scholar
  159. Geschwind, N., and Levitsky, W., 1968, Human brain, left-right asymmetries in temporal speech regions, Science 161: 186–187.CrossRefGoogle Scholar
  160. Gesell, A. L., Thompson, H., and Amatruda, C. S., 1934, Infant Behavior: Its Genesis and Growth, McGraw-Hill, New York.CrossRefGoogle Scholar
  161. Gibson, E. J., 1969, Principles of Perceptual Learning and Development, Appleton-Century-Crofts, New York.Google Scholar
  162. Gibson, E. J., and Spelke, E. S., 1983, The development of perception, in: Cognitive Development (J. H. Flavell and E. M. Markman, series eds.), Vol. 3: Handbook of Child Psychology ( P. H. Mussen, ed.), Wiley, New York.Google Scholar
  163. Gibson, J. J., 1952, The relation between visual and postural determinants of the phenomenal vertical, Psychol. Rev. 59: 370–375.CrossRefGoogle Scholar
  164. Gibson, J. J., 1954, The visual perception of object motion and subjective movement, Psycho!. Rev. 61: 304314.Google Scholar
  165. Gibson, J. J., 1966, The Senses Considered as Perceptual Systems, Houghton Mifflin, Boston.Google Scholar
  166. Gibson, J. J., 1979, An Ecological Approach to Visual Perception, Houghton Mifflin, Boston.Google Scholar
  167. Glickstein, M., 1984, Brain pathways in the visual guidance of movement and the behavioural functions of the cerebellum, in: Brain Circuits and Function of the Mind: Essays in Honor of Roger W. Sperry ( C. Trevarthen, ed.), Cambridge University Press, New York.Google Scholar
  168. Glickstein, M., and Gibson, A. R., 1976, Visual cells in the pons of the brain, Sci. Am. 234: 90–98.CrossRefGoogle Scholar
  169. Glucksmann, A., 1940, The development and differentiation of the tadpole eye, Br. J. Ophthalmol. 24: 153–178.CrossRefGoogle Scholar
  170. Glucksmann, A., 1965. Cell death in normal development, Arch. Biol. 76: 419–437.Google Scholar
  171. Goldman, P. S., 1971, Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity, Exp. Neurol. 32: 366–387.CrossRefGoogle Scholar
  172. Goldman, P. S., 1972, Developmental determinants of cortical plasticity, Acta Neurobiol. Exp. 32: 495–511.Google Scholar
  173. Goldman, P. S., 1976, An alternative to developmental plasticity: Heterology of CNS structures in infants and adults, in: Plasticity and Recovery of Function in the Central Nervous System ( D. G. Stein, J. J. Rosen, and N. Butters, eds.), pp. 149–174, Academic Press, New York.Google Scholar
  174. Goldman, P. S., and Nauta, W. J. H., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic and motor cortex of the developing rhesus monkey, Brain Res. 122: 393–413.CrossRefGoogle Scholar
  175. Goldman, P. S., Rosvold, H. E., and Mishkin, M., 1970, Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey, J. Comp. Physiol. Psychol. 70: 454–463.CrossRefGoogle Scholar
  176. Gottlieb, G., 1971a, Development of Species Identification in Birds: An Inquiry into the Prenatal Determinants of Perception, University of Chicago Press, Chicago.Google Scholar
  177. Gottlieb, G., 1971b, Ontogenesis of sensory function in birds and mammals, in: Biopsychology of Development ( E. Tobach, L. R. Aronson, and E. Shaw, eds.), pp. 67128, Academic Press, New York.Google Scholar
  178. Gottlieb, G., 1973, Introduction to behavioral embryology, in: Studies on the Development of Behavior and the Nervous System, Vol. I: Behavioral Embryology (G. Gottlieb, ed.), pp. 3–45, Academic Press, New York. Grafstein, B., and Murray, M., 1969, Transport of protein in goldfish optic nerve during regeneration, Exp. Neurol. 25: 494–508.Google Scholar
  179. Greene, P. H., 1972, Problems of organization of motor systems: in: Progress in Theoretical Biology (R. Rosen and F. M. Snell, eds.), Vol. II, pp. 303–338, Academic Press, New York.Google Scholar
  180. Gregory, R. L., 1970, The Intelligent Eye, Weidenfeld, London.Google Scholar
  181. Gregory, R. L., and Wallis, J. C., 1963, Recovery from early blindness: A case study, Exp. Psycho!. Soc. Monog., No. 2, Heifer, Cambridge.Google Scholar
  182. Gross, C. G., and Mishkin, M., 1977. The neural basis of stimulus equivalence across retinal translation, in: Lateralization in the Nervous System ( S. R. Harnand, ed.), pp. 109–121, Academic Press, New York.CrossRefGoogle Scholar
  183. Guillery, R. W., 1972, Binocular competition in the control of geniculate cell growth, J. Comp. Neurol. 144: 117–130.CrossRefGoogle Scholar
  184. Gustafson, T., and Wolpert, L., 1967, Cellular movement and contact in sea urchin morphogenesis, Biol. Rev. Cambridge Philos. Soc. 42: 442–498.CrossRefGoogle Scholar
  185. Guth, L., 1975, History of central nervous system regeneration research, Exp. Neurol. 48 (3, part 2): 3–15.CrossRefGoogle Scholar
  186. Gwiazda, J., Brill, S., Mohindra, I., and Held, R., 1980, Preferential looking acuity in infants from two to fifty-eight weeks of age, J. Opt. Physiol. Optics 57: 428432.Google Scholar
  187. Haith, M. M., 1979, Visual competence in early infancy, in: Handbook of Sensory Physiology ( R. Held, R. Leibowitz, and H. L. Teuber, eds.), Vol. VIII, pp. 311–356, Springer-Verlag, Berlin.Google Scholar
  188. Haith, M. M., 1980, Rules that Babies Look By, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  189. Haith, M. H., and Campos, J. J., 1977, Human infancy, Annu. Rev. Psychol. 28: 251–293.CrossRefGoogle Scholar
  190. Halliday, M. A. K., 1975, Learning How to Mean, Arnold, London.Google Scholar
  191. Hamburger, V., 1948, The mitotic patterns in the spinal cord of the chick embryo and their relation to histogenetic processes, J. Comp. Neurol. 88: 221–284.CrossRefGoogle Scholar
  192. Hamburger, V., 1963, Some aspects of the embryology of behavior, Q. Rev. Biol. 38: 342–365.CrossRefGoogle Scholar
  193. Hamburger, V., 1969, Origins of integrated behavior, in: The Emergence of Order in Developing Systems ( M. Locke, ed.), pp. 251–271, Academic Press, New York.Google Scholar
  194. Hamburger, V., 1973, Anatomical and physiological basis of embryonic motility in birds and mammals, in: Studies on the Development of Behavior and the Nervous System, Vol. 1: Behavioral Embryology ( G. Gottlieb, ed.), pp. 51–76, Academic Press, New York.Google Scholar
  195. Hamburger, V., 1981, Historical landmarks in neurogenesis, Trends Neurosci. 4: 151–155.CrossRefGoogle Scholar
  196. Hamilton, W. J., Boyd, J. D., and Mossman, H. W., 1962, Human Embryology, 3rd ed., Helfer, Cambridge.Google Scholar
  197. Harris, W. A., 1982, The transplantation of eyes to genetically eyeless salamanders: Visual projections and somatosensory interactions, J. Neurosci. 2: 339–353.Google Scholar
  198. Harrison, R. G., 1907. Observations on the living developing nerve fiber, Anat. Rec. 1: 116–118.CrossRefGoogle Scholar
  199. Harrison, R. G., 1910, The outgrowth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9: 787–848.CrossRefGoogle Scholar
  200. Harrison, R. G., 1935, On the origin and development of the nervous system studied by the methods of experimental embryology, Proc. R. Soc. Lond. B 118: 155 96.Google Scholar
  201. Harrison, R. G., 1945, Relations of symmetry in the developing embryo, Trans. Conn. Acad. Arts Sci. 36: 277330.Google Scholar
  202. Haynes, H., White, B. L., and Held, R., 1965, Visual accommodation in human infants, Science 148: 528–530.CrossRefGoogle Scholar
  203. Heacock, A. M., and Agranoff, B. W., 1982, Protein synthesis and transport in the regenerating goldfish Carassius auratus visual system, Neurochem. Res. 7:771788.Google Scholar
  204. Hebb, D. 0., 1949, The Organization of Behavior, Wiley, New York.Google Scholar
  205. Hécaen, H., 1976, Acquired aphasia in children and the ontogenesis of hemispheric functional specification, Brain Lang. 3: 114–134.CrossRefGoogle Scholar
  206. Hécaen, H., and Albert, M. L., 1978, Human Neuropsychology, Wiley, New York.Google Scholar
  207. Hein, A., 1970, Recovering spatial motor coordination after visual cortex lesions, in: Perception and Its Disorders (D. Hamburg, ed.), Research Publications of the Association for Research in Nervous Mental Disease, Vol. 48, pp. 163–185, Williams & Wilkins, Baltimore. Hein, A., and Diamond, R. M., 1971, Independence of cat’s scotopic and photopic systems in acquiring control of visually guided behavior, J. Comp. Physiol. Psychol. 76: 31–38.Google Scholar
  208. Hein, A., and Held, R., 1967, Dissociation of the visual placing response into elicited and guided components, Science 158: 390–392.CrossRefGoogle Scholar
  209. Hein, A., Gower, E. C., and Diamond, R. M., 1970a, Exposure requirements for developing the triggered component of the visual-placing response, J. Comp. Physiol. Psychol. 73: 188–192.CrossRefGoogle Scholar
  210. Hein, A., Held, R., and Gower, E. C., 1970b, Development and segmentation of visually controlled movement by selective exposure during rearing, J. Comp. Physiol. Psychol. 73: 181–187.CrossRefGoogle Scholar
  211. Hein, A., Vital-Durand, F., Salinger, W., and Diamond, R., 1979, Eye movements initiate visual-motor development in the cat, Science 204: 1321–1322.CrossRefGoogle Scholar
  212. Held, R., and Bauer, J. A., 1967, Visual guided reaching in infant monkeys after restricted rearing, Science 155: 718–720.CrossRefGoogle Scholar
  213. Held, R., and Bauer, J. A., 1974, Development of sensorially guided reaching in infant monkeys, Brain Res. 71: 265–271.CrossRefGoogle Scholar
  214. Held, R., and Freedman, S. J., 1963, Plasticity in human sensorimotor control, Science 142: 455–462.CrossRefGoogle Scholar
  215. Held, R., and Hein, A., 1963, Movement-produced stimulation in the development of visually guided behavior, J. Comp. Physiol. Psychol. 56: 872–876.CrossRefGoogle Scholar
  216. Held, R., Birch, E., and Gwiazda, J., 1980, Stereoacuity of human infants, Proc. Natl. Acad. Sci. U.S.A. 77: 55725574.Google Scholar
  217. Held, R., Shimojo, S., and Gwiazda, J., 1984, Gender differences in the early development of human visual resolution. Proceedings of the ARVO Meeting, April-May, 1984 (abstract No. 90), Invest. Ophthalm. Vis. Sci. 25: 220.Google Scholar
  218. Herrick, C. J., 1948, The Brain of the Tiger Salamander, University of Chicago Press, Chicago.Google Scholar
  219. Hess, E. H., 1956, Space perception in the chick, Sci. Am. 195: 71–80.CrossRefGoogle Scholar
  220. Hewitt, W., 1962, The development of the corpus callosum, J. Anat. 96: 355–358.Google Scholar
  221. Hibbard, E., 1986, Retino-tectal connections made through ectopic optic nerves, in: Brain Circuits and Functions of the Mind: Essays in Honor of Roger W. Sperry ( C. Trevarthen, ed.), Cambridge University Press, New York.Google Scholar
  222. Hibbard, E., and Omberg, R. L., 1976, Restoration of vision in genetically eyeless axolotls, Exp. Neurol. 50: 113–123.CrossRefGoogle Scholar
  223. Hickey, 1981, The developing visual system, Trends Neurosci. 4: 41–44.CrossRefGoogle Scholar
  224. Hirsch, H. V. B., and Spinelli, D. N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science 168: 869871.Google Scholar
  225. Hofsten, C., von, 1980, Predictive reaching for moving objects by human infants, J. Exp. Child Psycho!. 30: 369–382.CrossRefGoogle Scholar
  226. Hofsten, C. von, 1982, Eye-hand coordination in the newborn, Dev. Psycho!. 18: 450–467.CrossRefGoogle Scholar
  227. Hofsten, C., von, 1983, Catching skills in infancy, J. Exp. Psycho!. Hum. Percep. Perf. 9: 75–85.CrossRefGoogle Scholar
  228. Hofsten, C., von, 1984, Developmental changes in the organization of prereaching movements, Dev. Psycho!. 20: 378–388.Google Scholar
  229. Hofsten, C., von, and Fazel-Zandy, S., 1984, Development of visually guided hand orientation in reaching, J. Exp. Child Psycho!. 38: 208–219.CrossRefGoogle Scholar
  230. Hohman, A., and Creutzfeldt, O. D., 1975, Squint and development of binocularity in humans, Nature (London) 254: 613–614.CrossRefGoogle Scholar
  231. Hollyfield, J. G., 1971, Differential growth of the neural retina in Xenopus laevis larvae, Dev. Biol. 24: 264286.Google Scholar
  232. Holst, E., von, 1954, Relations between the central nervous system and the peripheral organs, Br. J. Anim. Behay. 3: 89–94.Google Scholar
  233. Holtfreter, J., 1939, Gewebeaffinitat, ein Mittel der embryonalen Formbildung, Arch. Exp. Zellforsch. 23: 169209.Google Scholar
  234. Hooker, D., 1952, The Prenatal Origin of Behavior, University of Kansas Press, Lawrence, Kansas.Google Scholar
  235. Hope, R. A., Hammond, B. J., and Gaze, R. M., 1976, The arrow model: Retinotectal specificity and map formation in the goldfish visual system, Proc. R. Soc. Lond. Ser. B. 194: 447–466.CrossRefGoogle Scholar
  236. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. (London) 160: 106–154.Google Scholar
  237. Hubel, D. H., and Wiesel, T. N., 1963, Receptive fields of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol. 26: 994–1002.Google Scholar
  238. Hubel, D. H., and Wiesel, T. N., 1965, Binocular interaction in the striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28: 1041–1059.Google Scholar
  239. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.Google Scholar
  240. Hubel, D. H., and Wiesel, T. N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol. (London) 206: 419–436.Google Scholar
  241. Hubel, D. H., and Wiesel, T. N., 1974a, Sequence, regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158: 267–294.CrossRefGoogle Scholar
  242. Hubel, D. H., and Wiesel, T. N., 1974b, Uniformity of monkey striate cortex: A parallel relationship between field size scatter and magnification factor, J. Comp. Neurol. 158: 295–306.CrossRefGoogle Scholar
  243. Hubel, D. H., Wiesel, T. N., and Le Vay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. Roy. Soc. London, Ser. B 278: 131–163.Google Scholar
  244. Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in mac-que monkey, J. Comp. Neurol. 177: 361–380.CrossRefGoogle Scholar
  245. Hughes, A. F. W., 1968, Aspects of Neural Ontogeny, Academic Press, New York.Google Scholar
  246. Humphrey, A. L., Skeen, L. C., and Norton, T. T., 1980, Topographic organization of the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping, J. Comp. Neurol. 192: 549–566.CrossRefGoogle Scholar
  247. Humphrey, N., 1974, Vision in monkey without striate cortex: A case study, Perception 3: 241–255.CrossRefGoogle Scholar
  248. Humphrey, T., 1964, Some correlations between the appearance of human fetal reflexes and the development of the nervous system, Prog. Brain Res. 4: 93135.Google Scholar
  249. Humphrey, T., 1969, Postnatal repetition of human prenatal activity sequences with some suggestions of their neuroanatomical basis, in: Brain and Early Behavior: Development in the Fetus and Infant ( R. J. Robinson, ed.), pp. 43–84, Academic Press, New York.Google Scholar
  250. Hunt, R. K., 1975a, The cell cycle, cell lineage, and neuronal specificity, in: The Cell Cycle and Cell Differentiation ( H. Holtzer and J. Reinart, eds.), pp. 43–62, Springer-Verlag, Berlin.Google Scholar
  251. Hunt, R. K., 1975b, Developmental programming for retinotectal patterns, in: Ciba Foundation Symposium on Cell Patterning, New Series 29: 131–159.Google Scholar
  252. Hunt, R. K., and Berman, N. J., 1975, Patterning of neuronal locus specificities in the retinal ganglion cells after partial extirpation of the embryonic eye, J. Comp. Neurol. 162: 43–70.CrossRefGoogle Scholar
  253. Hunt, R. K., and Cowan, W. M., 1986, The chemoaffinity hypothesis: An appreciation of Roger Sperry’s contributions to developmental biology, in: Brain Circuits and Functions of the Mind: Essays in Honor of Roger W. Sperry ( C. Trevarthen, ed.), Cambridge University Press, New York.Google Scholar
  254. Huttenlocker, P. R., 1967, Development of cortical neuronal activity in the neonatal cat, Exp. Neurol. 17: 247262.Google Scholar
  255. Imbert, M., 1979, Maturation of visual cortex with and without visual experience, in: Developmental Neurobiology of Vision ( R. D. Freeman, ed.), pp. 43–49, Plenum Press, New York.CrossRefGoogle Scholar
  256. Ingle, D., 1973, Two visual systems in the frog, Science 181: 1053–1055.CrossRefGoogle Scholar
  257. Ingle, D., 1976a, Behavioral correlates of central vision in anurans, in: Frog Neurobiology (R. Llinas and W. Precht, eds.), pp. 435–451, Springer-Verlag, Berlin. Ingle, D., 19766, Spatial vision in anurans, in: The Amphibian Visual System ( K. Fite, ed.), pp. 119–140, Academic Press, New York.Google Scholar
  258. Ingle, D., 1978, Visual behavior development in non-mammalian vertebrates, in: Handbook of Sensory Physiology, (M. Jacobson, ed.), Vol IX (a) Development of Sensory Systems, pp. 115–134, Springer-Verlag, Berlin.Google Scholar
  259. Ingle, D., and Dudek, A., 1977, Aberrant retino-tectal projections in the frog, Exp. Neurol. 55: 567–582.CrossRefGoogle Scholar
  260. Ingle, D., and Sprague, J. M. (eds.), 1975, Neurosciences Research Program Bulletin, Vol. 13: Sensorimotor Function of the Midbrain Tectum, pp. 169–288, Neurosciences Research Program, Cambridge, Massachusetts.Google Scholar
  261. Ingoglia, N. A., and Sharma, S. C., 1978, The effect of inhibition of axonal RNA transport on the restoration of retinotectal projections in regenerating optic nerves of goldfish, Brain Res. 156: 141–145.CrossRefGoogle Scholar
  262. Innocenti, G. M., 1981, Growth and reshaping of axons in the establishment of visual callosal connections, Science 212: 824–827.CrossRefGoogle Scholar
  263. Innocenti, G. M., 1983, Exuberant callosal projections between the developing hemispheres, in: Advances in Neurotraumatology ( R. Villani, I. Papo, M. Giovanelli, S. M. Gaini, and G. Tornei, eds.), pp. 5–10, Excerpta Medica, Amsterdam.Google Scholar
  264. Innocenti, G. M., and Clarke, S., 1983, Multiple sets of visual cortical neurones projecting transitorily through the corpus callosum, Neurosci. Lett. 41: 27–32.CrossRefGoogle Scholar
  265. Innocenti, G. M., and Frost, D. 0., 1979, Effects of visual experience on the maturation of the efferent system to the corpus callosum, Nature (London) 280: 231–234.Google Scholar
  266. Jacobson, C.-0., 1959, The localization of the presumptive cerebral regions in the neural plate of the axolotl larva, J. Embryol. Exp. MorphoL 7: 1–21.Google Scholar
  267. Jacobson, M., 1968a, Development of neuronal specificity in retinal ganglion cells of Xenopus, Dev. Biol. 17: 202–218.CrossRefGoogle Scholar
  268. Jacobson, M., 1968b, Cessation of DNA synthesis in retinal ganglion cells correlated with the time of specification of their central connections, Dev. Biol. 17: 219232.Google Scholar
  269. Jacobson, M., 1970, Developmental Neurobiology, Holt, New York.Google Scholar
  270. Jacobson, M., 1974, Premature specification of the retina in embryonic Xenopus eyes treated with ionophore X537A, Science 191: 288–289.CrossRefGoogle Scholar
  271. Jacobson, M., and Baker, R. E., 1969, Development of neuronal connections with skin grafts in frogs: Behavioural and electrophysiological studies, J. Comp. Neurol. 137: 121–142.CrossRefGoogle Scholar
  272. Jacobson, M., and Hirsch, H. V. B., 1973, Development and maintenance of connectivity in the visual system of the frog, I. The effect of eye rotation and visual deprivation, Brain Res. 49: 47–65.CrossRefGoogle Scholar
  273. Jacobson, M., and Hunt, R. K., 1973, The origins of nerve-cell specificity, Sci. Am. 228 (2): 26–35.CrossRefGoogle Scholar
  274. Jacobson, M., and Levine, R. L., 1975, Stability of implanted duplicate tectal positional markers serving as target for optic axons in adult frogs, Brain Res. 92: 468471.Google Scholar
  275. Jeannerod, M., 1982, A two-step model for visuo-motor development, in: Regressions in Mental Development: Basic Phenomena and Theories ( T. G. Bever, ed.), pp. 299–310, Lawrence Erlbaum Associates, Hillsdale, New. Jersey.Google Scholar
  276. Jeeves, M. A., 1979, Some limits to interhemispheric integration in cases of callosal agenesis and its partial commissurotomy, in: Structure and Function of the Cerebral Commissures ( I. Steele Russell, M. W. van Hof, and G. Berlucchi, eds.), pp. 449–474, Macmillan, New York.Google Scholar
  277. Johansson, G., Hofsten, C. von, and Jansson, G., 1980, Event perception, Annu. Rev. Psychol. 31:27–63. Johnston, B. T., Schrameck, J. E., and Mark, R. F., 1975, Reinnervation of axolotl limbs. II. Sensory nerves, Proc. R. Soc. Lond. B 190: 59–75.CrossRefGoogle Scholar
  278. Jones, E. G., 1975, Varieties and distribution of non-pyramidal cells in the somatosensory cortex of the squirrel monkey, J. Comp. Neurol. 160: 205–268.CrossRefGoogle Scholar
  279. Kalil, R. E., and Schneider, G. E., 1975, Abnormal synaptic connections of the optic tract in the thalamus after midbrain lesions in newborn hamsters, Brain Res. 100: 690–698.CrossRefGoogle Scholar
  280. Kalnins, I. V., and Bruner, J. S., 1973, The coordination of visual observation and instrumental behavior in early infancy, Perception 2: 307–314.CrossRefGoogle Scholar
  281. Katz, M. J., and Lasek, R. J., 1979, Substrate pathways which guide growing axons in Xenopus embryos, J. Comp. Neurol. 183: 817–832.CrossRefGoogle Scholar
  282. Keating, M. J., 1976, The formation of visual neuronal connections: an appraisal of the present status of the theory of “neuronal specificity,” in: Neural and Behavioral Specificity, Studies on the Development of Behavior and the Nervous System (G. Gottlieb, ed.), Vol. 3, pp. 59–110, Academic Press, New York.Google Scholar
  283. Keating, M. J., and Gaze, R. M., 1970, Rigidity and plasticity in the amphibian visual system, Brain Behay. Evol. 3: 102–120.CrossRefGoogle Scholar
  284. Kennedy, H., Martin, K. A. C., and Whitteridge, D., 1983, Receptive field characteristics of neurons in newborn and adult sheep, Neurosci. 10: 295–300.CrossRefGoogle Scholar
  285. Kirk, U., 1983, The Neuropsychology of Language, Reading and Spelling, Academic Press, New York. Klosovskii, B. N., 1963, The Development of the Brain and Its Disturbance by Harmful Factors, Pergamon, Oxford.Google Scholar
  286. Koffka, K., 1931, The Growth of the Mind, Harcourt, New York.Google Scholar
  287. Kollros, J. J., 1968, Endocrine influences in neural development, in: Growth of the Nervous System ( G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 179–192, Churchill, London.Google Scholar
  288. Koppel, H., and Innocenti, G. M., 1983, Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat, Neurosci. Lett. 41: 33–40.CrossRefGoogle Scholar
  289. Kraschen, S., 1973, Lateralization of language learning and the critical period. Some new evidence, Lang. Learning, 23: 63–74.Google Scholar
  290. Kraschen, S., 1975, The critical period for language acquisition and its possible bases, in: Developmental Psycholinguistics and Communication Disorders (D. R. Aaronson and R. W. Rieber, eds.), Vol. 263, pp. 211224, Annals of the New York Academy of Science, New York.Google Scholar
  291. Kuypers, H. G. J. M., 1973, The anatomical organisation of the descending pathways and their contributions of motor control, especially in primates, in: New Developments in E.M.G. and Clinical Neurophysiology ( T. E. Desmedt, ed.), Vol. 3, pp. 38–68, Karger, Basel.Google Scholar
  292. Landsdell, H., 1962, Laterality of verbal intelligence in the brain, Science 135: 922–923.CrossRefGoogle Scholar
  293. Landsdell, H., 1969, Verbal and non-verbal factors in right hemisphere speech, J. Comp. Physiol. Psycho!. 69: 734–738.CrossRefGoogle Scholar
  294. Langworthy, O. R., 1928, The behavior of pouch young opossums correlated with myelinization of tracts, J. Comp. Neurot. 46: 201–240.Google Scholar
  295. Larroche, J.-C., 1966, The development of the central nervous system during intrauterine life, in: Human Development ( F. Falkner, ed.), pp. 257–276, W. B. Saunders, Philadelphia.Google Scholar
  296. Larroche, J.-C., 1967, Maturation morphologique du système nerveux central: Ses rapports avec le développement pondéral du foetus et son age gestationnel, in: Regional Development of the Brain in Early Life ( A. Minkowski, ed.), pp. 247–256, Blackwell, Oxford.Google Scholar
  297. Lashley, K. S., 1951, The problem of serial order in behaviour, in: Cerebral Mechanisms in Behaviour ( L. A. Jeffress, ed.), pp. 112–136, Wiley, New York.Google Scholar
  298. Law, M. I., and Constantine-Paton, M., 1980, Right and left eye bands in frogs with unilateral tectal ablations, Proc. Natl. Acad. Sci. U.S.A. 77: 2314–2318.CrossRefGoogle Scholar
  299. Law, M. I., and Constantine-Paton, M., 1981, Anatomy and physiology of experimentally produced striped tecta, J. Neurosci. 1: 741–759.Google Scholar
  300. Lawrence, D. G., and Kuypers, H. G. J. M., 1965, Pyramidal and non-pyramidal pathways in monkeys: Anatomical and functional correlation, Science 148: 973975.Google Scholar
  301. Lecours, A. R., 1975, Myelogenetic correlates of the development of speech and language, in: Foundations of Language Development: A Multidisciplinary Approach ( E. H. Lenneberg and E. Lenneberg, eds.), pp. 75–94, University Publishers, New York.Google Scholar
  302. Lecours, A. R., 1982, Correlates of Developmental Behavior in Brain Maturation, in: Regressions in Mental Development: Basic Phenomena and Theories ( T. G. Bever, ed.), pp. 267–298, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  303. Lee, D. N., 1978, The functions of vision, in: Modes of Perceiving and Processing Information ( H. L. Pick and E. Saltzman, eds.), pp. 195–170, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  304. Lee, D. N., and Lishman, J. R., 1975, Visual proprioceptive control of stance, J. Hum. Movement Studies 1: 8795.Google Scholar
  305. Lee, D. N., and Young, D. S., 1984, Visual timing of interceptive action, in: Brain Mechanisms and Spatial Vision ( D. Ingle, M. Jeannerod, and D. M. Lee, eds.), Martinus Nijhoff, The Hague.Google Scholar
  306. Leehey, S. C., Moskowitz-Cook, A., Brill, S., and Held, R., 1975, Orientational anisotropy in infant vision, Science 190: 900–902.CrossRefGoogle Scholar
  307. LeMay, M., 1976, Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate, Ann. N.Y. Acad. Sci. 280: 349–366.CrossRefGoogle Scholar
  308. Lenneberg, E. H., 1967, Biological Foundations of Language, Wiley, New York.Google Scholar
  309. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. H., 1959, What the frog’s eye tells the frog’s brain, Proc. I.R.E. 47: 1940–1951.CrossRefGoogle Scholar
  310. LeVay, S., 1973, Synaptic patterns in the visual cortex of the cat and monkey: Electron microscopy of Golgi preparations, J. Comp. Neurol. 150: 53–86.CrossRefGoogle Scholar
  311. LeVay, S., Hubel, D. H., and Wiesel, T. N., 1975, The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain, J. Comp. Neurol. 159: 559–576.Google Scholar
  312. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191: 1–52.CrossRefGoogle Scholar
  313. Leventhal, A. G., 1983, Relationship between preferred orientation and receptive field position of neurones in cat striate cortex, J. Comp. Neurol. 220: 476483.Google Scholar
  314. LeVere, T. E., 1975, Neural stability, sparing and behavioral recovery following brain damage, Psycho!. Rev. 82: 344–358.CrossRefGoogle Scholar
  315. Levi-Montalcini, R., 1966, The nerve growth factor: Its mode of action on sensory and sympathetic nerve cells, Harvey Lea. 60: 217–259.Google Scholar
  316. Levi-Montalcini, R., 1986, Ontogenesis of neuronal nets: Chemospecificity theory, 1963–1983, in: Brain Circuits and Functions of the Mind; Essays in Honour of Roger W. Sperry ( C. Trevarthen, ed.), Cambridge University Press, New York.Google Scholar
  317. Levy, J., 1969, Possible basis for the evolution of lateral specialization of the human brain, Nature (London) 224: 614–615.CrossRefGoogle Scholar
  318. Levy, J., 1976, A review of evidence for a genetic component in the determination of handedness, Behay. Genet. 6: 429–453.Google Scholar
  319. Levy, J., and Nagylaki, T., 1972, A model for the genetics of handedness, Genetics 72: 117–128.Google Scholar
  320. Levy, J., and Trevarthen, C., 1977, Perceptual, semantic and phonetic aspects of elementary language processes in split-brain patients, Brain 100: 105–118.CrossRefGoogle Scholar
  321. Levy, J., Trevarthen, C., and Sperry, R. W., 1972, Perception of bilateral chimeric figures following hemispheric deconnection, Brain 95: 61–78.CrossRefGoogle Scholar
  322. Lewis, M., 1969, Infants’ responses to facial stimuli during the first year of life, Dev. Psychol. 1: 75–86.CrossRefGoogle Scholar
  323. Lewis, W. H., 1906, On the origin and differentiation of the optic vesicle in amphibian embryo, Am. J. Anat. 16: 141–45.Google Scholar
  324. Lewis, W. H., 1907, Transplantation of the lips of the blastopore in Rana palustris, Am. J. Anat. 7:139–141. Liley, A. W., 1972, Disorders of amniotic fluid, in: Pathophysiology of Gestational Disorders, Vol. 2: Fetal-Placental Maternal Disorders (N. S. Assali, ed.), pp. 157206, Academic Press, New York.Google Scholar
  325. Lipsitt, L. P., 1969, Learning capacities of the human infant, in: Brain and Early Behaviour: Development in the Fetus and Infant ( R. J. Robinson, ed.), pp. 227–245, Academic Press, New York.Google Scholar
  326. Loeser, J. D., and Alvord, J. R., 1968, Agenesis of the corpus callosum, Brain 91: 553–570.CrossRefGoogle Scholar
  327. Loewenstein, W. R., 1968, Communication through cell junctions. Implications in growth control and differentiation, Dev. Biol. (Suppl.) 2: 151–183.Google Scholar
  328. Luttenberg, J., 1966, Contributions to the foetal ontogenesis of the corpus callosum in man. III. Myelination in the corpus callosum, Fol. Morphol. 14: 192.Google Scholar
  329. Magnin, M., Courin, J. H., and Flandrin, J. M., 1983, Possible visual pathways to the cat vestibular nuclei involving the nucleus prepositus hypoglossi, Exp. Brain Res. 51: 298–303.CrossRefGoogle Scholar
  330. Malpeli, J. G., and Baker, H., 1975, The representation of the visual field in the lateral geniculate nucleus of Ma-caca mulatta, J. Comp. Neurol. 161: 569–594.CrossRefGoogle Scholar
  331. Mann, I., 1964, The Development of the Human Eye, Grune & Stratton, New York.Google Scholar
  332. Maratos, 0., 1982, Trends in the Development of Imitation in Early Infancy, in: Regressions in Mental Development: Basic Phenomena and Theories ( T.G., Bever, ed.) pp. 81–101, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  333. Marin-Padilla, M., 1970, Prenatal and early post-natal ontogenesis of the cerebral cortex (neocortex) of the cat (Felix domestica): A Golgi study. I. The primordial neocortical organization, Z. Anat. Entwicklungsgesch. 134: 117–145.CrossRefGoogle Scholar
  334. Mark, R. F., 1974, Memory and Nerve-Cell Connections, Oxford University Press, London.Google Scholar
  335. Mark, R. F., 1975, Topograhy and topology in functional recovery of regenerated sensory and motor systems, in: Ciba Symposium on Cell Patterning, No. 29 (New Series), pp. 289–313, American Elsevier, New York.Google Scholar
  336. Mark, R. F., and Feldman, J., 1972, Binocular interaction in the development of optokinetic reflexes in tadpoles of Xenopus laevis, Invest. Ophthalmol. 11: 40 2410.Google Scholar
  337. Marr, D., 1982, Vision, W. H. Freeman, San Francisco. Marty, R., and Scherrer, J., 1964, Critères de maturation des systèmes afférents corticaux, Prog. Brain Res. 4: 222–234.Google Scholar
  338. Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts, W. H., 1959, Evidence the cut optic nerve fibers in a frog regenerate to their proper places in the tectum, Science 130: 1709–1710.CrossRefGoogle Scholar
  339. McGinnis, J. M., 1930, Eye movements and optic nystagmus in early infancy, Genet. Psycho!. Monogr. 8: 32 1430.Google Scholar
  340. McGraw, M. B., 1943, The Neuromuscular Maturation of the Human Newborn, Columbia University Press, New York.Google Scholar
  341. McKenzie, B. F., and Day, R. H., 1972, Object distance as a determinant of visual fixation in early infancy, Science 178: 1108–1110.CrossRefGoogle Scholar
  342. MacMahon, D., 1974, Chemical messengers in development: A hypothesis, Science 185: 1012–1021.CrossRefGoogle Scholar
  343. McMahon, D., and West, C., 1976, Transduction of positional information during development, in: Cell Surface Interactions in Embryogenesis ( G. Poste and G. Nicolson, eds.), pp. 449–493, Elsevier North-Holland, New York.Google Scholar
  344. Mehler, J., and Bertoncini, J., 1979, Infants’ perception of speech and other acoustic stimuli, in: Psycholinguistics, Series II ( J. Morton and J. C. Marshall, eds.), pp. 67105, Elek Scientific Books, London.Google Scholar
  345. Meltzoff, A. N., and Moore, M. H., 1977, Imitation of facial and manual gestures by human neonates, Science 198: 75–78.CrossRefGoogle Scholar
  346. Mesulam, M.-M., 1983, The functional anatomy and hemispheric specialization for directed attention, Trends Neurosci. 6: 384–387.CrossRefGoogle Scholar
  347. Metzger, W., 1974, Conscious perception and action, in: Handbook of Perception ( E. C. Carterette and M. P. Friedman, eds.), Vol. 1, pp. 109–122, Academic Press, New York.Google Scholar
  348. Meyer, R. L., 1975, Tests for field regulation in the retinotectal system of goldfish, in: Developmental Biology, Pattern Formation, Gene Regulation ( D. McMahon and C. F. Fox, eds.), pp. 257–275, W. A. Benjamin, Menlo Park, California.Google Scholar
  349. Meyer, R. L., 1979, “Extra” optic fibers exclude normal fibers from tectal regions in goldfish, J. Comp. Neurol. 183:883–902.Google Scholar
  350. Meyer, R. L., 1980, Mapping the normal and regenerating retinotectal projection of goldfish with autoradiographic methods, J. Comp. Neurol. 189: 273289.Google Scholar
  351. Meyer, R. L., 1983, Tetrodotoxin inhibits the formation of refined retinotopography in goldfish, Dev. Brain Res. 6: 293–298.CrossRefGoogle Scholar
  352. Meyer, R. L., 1986, The case for chemoaffinity in the retino-tectal system: Recent studies, in: Brain Circuits and Functions of the Mind: Essays in Honour of Roger W. Sperry ( C. Trevarthen, ed.), Cambridge University Press, New York.Google Scholar
  353. Meyer, R. L., and Sperry, R. W., 1973, Test for neuro-plasticity in the anuran retinotectal system, Exp. Neurol. 40: 525–539.CrossRefGoogle Scholar
  354. Meyer, R. L., and Sperry, R. W., 1976, Retinotectal specificity: Chemospecificity theory, in: Neural and Behavioral Specificity, Studies on the Development of Behav for and the Nervous System ( G. Gottlieb, ed.), Vol. 3, pp. 111–149, Academic Press, New York.CrossRefGoogle Scholar
  355. Michotte, A., 1963, The Perception of Causality (translated by T. R. Miles and E. Miles ), Methuen, London.Google Scholar
  356. Milner, B., 1974, Interhemispheric differences and psychological processes, Br. Med. Bull. 27: 272–277.Google Scholar
  357. Miner, N., 1956, Integumental specification of sensory fibers in the development of cutaneous local sign, J. Comp. Neurol. 105: 161–170.CrossRefGoogle Scholar
  358. Mishkin, M., Ungerleider, L. G., and Macko, K. A., 1983, Object vision and spatial vision: two cortical pathways, Trends Neurosci. 6: 414–417.CrossRefGoogle Scholar
  359. Mitchell, D. E., and Timney, B., 1984, Postnatal development of function in the mammalian visual system, in: Handbook of Physiology-The Nervous System ( I. Darian-Smith, ed.), Vol. III, pp. 507–555, American Physiological Society, Bethesda, Maryland.Google Scholar
  360. Molfese, D., 1983, Neural mechanisms underlying the processing of speech information in infants and adults: Suggestions of differences in development and structure from electrophysiological research, in: Neuropsychology of Language, Reading and Spelling ( U. Kirk, ed.), pp. 109–128, Academic Press, New York.Google Scholar
  361. Molfese, D. L., and Molfese, V. J., 1979, Hemisphere and stimulus differences as reflected in the cortical responses of newborn infants to speech stimuli, Dev. Psycho[. 15: 505–511.CrossRefGoogle Scholar
  362. Molfese, D. L., Freeman, R. B., and Palermo, D. S., 1975, The ontogeny of brain lateralization for speech and nonspeech stimuli, Brain Lang. 2: 356–368.CrossRefGoogle Scholar
  363. Molliver, M., Kostovic, I., and Van der Loos, H., 1973, The development of synapses in cerebral cortex of the human fetus, Brain Res. 50: 403–407.CrossRefGoogle Scholar
  364. Morest, D. K., 1970, A study of neurogenesis in the forebrain of opossum pouch young, Z. Anat. Entwicklungsgesch. 130: 265–305.CrossRefGoogle Scholar
  365. Morgan, M. J., 1976, Embryology and the inheritance of asymmetry, in: Lateralization of the Nervous System ( S. R. Harnand, R. W. Doty, L. Goldstein, J. Jaynes, and G. Krautheimer, eds.), pp. 173–194, Academic Press, New York.Google Scholar
  366. Morgan, T. H., 1901, Regeneration, Macmillan, New York.Google Scholar
  367. Mountcastle, V. B., 1957, Modality and topographic properties of single neurones of cats’ somatic sensory cortex, J. Neurophysiol. 20: 408–434.Google Scholar
  368. Mountcastle, V. B., 1974, Neural mechanisms in somesthesia, in: Medical Physiology, 13th ed. (V. B. Mount-castle, ed.), Vol. 1, pp. 307–347, C. V. Mosby, St. Louis. Mountcastle, V. B., Lynch, J. C., Georgopolous, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the rhesus monkey: Command functions for operations within extrapersonal space, J. Neurophysiol. 38: 871–908.Google Scholar
  369. Mundy-Castle, A., and Anglin, J., 1973, Looking strategies in infants, in: The Competent Infant: Research and Commentary ( L. Stone, H. Smith, and L. Murphy, eds.), pp. 713–718, Basic Books, New York.Google Scholar
  370. Muntz, W. R. A. 1962, Effectiveness of different colours of light in releasing positive phototactic behaviour of frogs, and a possible function of the retinal projection to the diencephalon, J. Neurophysiol. 25: 712–720.Google Scholar
  371. Murray, M., and Forman, D. S., 1971, Fine structural changes in goldfish retinal ganglion cells during axonal regeneration, Brain Res. 32: 278–298.CrossRefGoogle Scholar
  372. Murray, M., and Grafstein, B., 1969, Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons, Exp. Neurol. 23: 544–560.CrossRefGoogle Scholar
  373. Nebes, R. D., 1974, Dominance of the minor hemisphere in commissurotomized man for the perception of part-whole relationships, in: Hemispheric Disconnection and Cerebral Function ( M. Kinsbourne and W. L. Smith, eds.), pp. 155–164, Charles C Thomas, Springfield, Illinois.Google Scholar
  374. Needham, J., 1942, Biochemistry and Morphogenesis, Cambridge University Press, London.Google Scholar
  375. Neisser, U., 1967, Cognitive Psychology, Appleton-Century-Crofts, New York.Google Scholar
  376. Neisser, U., 1976, Cognition and Reality, W. H. Freeman, San Francisco.Google Scholar
  377. Neville, H. J., 1980, Event-related potentials in neuropsychological studies of language, Brain Lang. 11: 300–318.CrossRefGoogle Scholar
  378. Neville, H. J., and Bellugi, U., 1978, Patterns of cerebral specialization in congenitally deaf adults: A preliminary report, in: Understanding Language Through Sign Language Research ( P. Siple, ed.), pp. 239–257, Academic Press, New York.Google Scholar
  379. Nieuwkoop, P. D., and Faber, J., 1956, Normal Table of Xenopus laevis (Daudin), North-Holland, Amsterdam.Google Scholar
  380. Oppenheim, R. W., 1973, Prehatching and hatching behavior: Comparative and physiological considerations, in: Studies in the Development of Behavior and the Nervous System, Vol. 1: Behavioral Embryology ( G. Gottlieb, ed.), pp. 164–236, Academic Press, New York.Google Scholar
  381. Oppenheim, R. W., 1974, The ontogeny of behavior in the chick embryo, in Advances in the Study of Behavior ( D. H. Lehrman, J. S. Rosenblatt, R. A. Hinde, and E. Shaw, eds.), Vol. 5, pp. 133–172, Academic Press, New York.Google Scholar
  382. Oppenheim, R. W. 1982, The neuroembryological study of behavior, Curr. Top. Dev. Biol. 17 (3): 257–309.CrossRefGoogle Scholar
  383. Oppenheim, R. W., and Nunez, R., 1982, Electrical stimulation of hindlimb increases neuronal cell death in chick embryo, Nature (London) 295: 57–59.CrossRefGoogle Scholar
  384. Oppenheim, R. W., and Reitzel, J., 1975, Ontogeny of behavioral sensitivity to strychnine in the chick embryo: Evidence for the early onset of CNS inhibition, Brain Behay. Evol. 11: 130–159.CrossRefGoogle Scholar
  385. Orban, G. A., Kennedy, H., Maes, H., and Amblard, B., 1978, Cats reared in stroboscopic illumination: Velocity characteristics of Area 18 neurons, Arch. Ital. Biol. 116: 413–419.Google Scholar
  386. Ordy, J. M., Massopust, L. C., and Wolin, L. R., 1962Google Scholar
  387. Postnatal development of the retina, ERG, and acuity in the rhesus monkey, Exp. Neurol. 5: 364–382.Google Scholar
  388. Papousek, H., 1961, Conditioned head rotation reflexes in the first six months of life, Acta Pediatr. 50: 565576.Google Scholar
  389. Papousek, H., 1969, Individual variability in learned responses in human infants, in: Brain and Early Behaviour:: Development in Fetus and Infant ( R. J. Robinson, ed.), pp. 251–266, Academic Press, New York.Google Scholar
  390. Pasik, T., and Pasik, P., 1971, The visual world of monkeys deprived of striate cortex: Effective stimulus parameters and the importance of the accessory optic system, Vision Res. (Suppl.) 3: 419–435.CrossRefGoogle Scholar
  391. Peiper, A., 1963, Cerebral Function in Infancy and Childhood, Consultants Bureau, New York.Google Scholar
  392. Perenin, M. T., and Jeannerod, M., 1975, Residual vision in cortically blind hemifields, Neuropsychologia 13:1–7.Google Scholar
  393. Pettigrew, J. D., 1972, The importance of early visual experience for neurons of the developing geniculostriate system, Invest. Ophthalmol. 11: 386–394.Google Scholar
  394. Pettigrew, J. D., and Freeman, R. D., 1973, Visual experience without lines: Effect on developing cortical neurons, Science 182: 599–601.CrossRefGoogle Scholar
  395. Piaget, J., 1953, The Origins of Intelligence in Children, Routledge and Kegan Paul, London (original French edition, 1936 ).Google Scholar
  396. Piaget, J., 1970, Piaget’s theory, in: Carmichael’s Manual of Child Psychology ( P. H. Mussen, ed.), pp. 703–732, Wiley, New York.Google Scholar
  397. Pirchio, M., Spinelli, D., Fiorentini, A., and Maffei, L., 1978, Infant contrast sensitivity evaluated by evoked potentials, Brain Res. 141: 179–184.CrossRefGoogle Scholar
  398. Polyak, S. L., 1941, The Vertebrate Visual System, The University of Chicago Press, Chicago.Google Scholar
  399. Pomaranz, B., 1972, Metamorphosis of frog vision: Changes in ganglion cell physiology and anatomy, Exp. Neurol. 34: 187–199.CrossRefGoogle Scholar
  400. Pöppel, E., Held, R., and Frost, D., 1973, Residual function after brain wounds involving the central visual pathways in man, Nature (London) 243: 295–296.CrossRefGoogle Scholar
  401. Prechtl, H. F. R., 1984 (ed.), Continuity of Neural Functions from Prenatal to Postnatal Life, Clinics in Developmental Medicine No. 94, Blackwell Scientific Publications, Oxford.Google Scholar
  402. Prestige, M. C., 1970, Differentiation, degeneration, and the role of the periphery: Quantitative considerations, in: The Neurosciences: Second Study Program ( F. O. Schmitt, ed.), pp. 73–82, Rockefeller University Press, New York.Google Scholar
  403. Prestige, M. C., and Willshaw, D. J., 1975, On the role of competition in the formation of patterned neural connections, Proc. R. Soc. London, Ser. B 190: 77–98.CrossRefGoogle Scholar
  404. Probst, F. P., 1973, Congenital defects of the corpus callosum, Acta Radiol. Suppl. 331, Acta Radiologica, Stockholm.Google Scholar
  405. Purves, D., 1983, Modulation of neuronal competition by postsynaptic geometry in antonomic ganglia, Trends Neurosci. 6: 10–16.CrossRefGoogle Scholar
  406. Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145: 61–84.CrossRefGoogle Scholar
  407. Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183: 425–427.CrossRefGoogle Scholar
  408. Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature (London) 261: 467–471.CrossRefGoogle Scholar
  409. Rakic, P., 1977, Prenatal development of the visual system in the rhesus monkey, Philos. Trans. R. Soc. Lond. 278: 245–260.CrossRefGoogle Scholar
  410. Rakic, P., 1979, Genesis of visual connections in the rhesus monkey, in: Developmental Neurobiology of Vision ( R. D. Freeman, ed.), pp. 249–260. Plenum Press, New York.CrossRefGoogle Scholar
  411. Rakic, P., and Riley, K. P., 1983, Overproduction and elimination of retinal axons in the fetal rhesus monkey, Science 219: 1441–1444.CrossRefGoogle Scholar
  412. Rakic, P., and Yakovlev, P. I., 1968, Development of the corpus callosum and cavum septi in man, J. Comp. Neurol. 132: 45–72.CrossRefGoogle Scholar
  413. Ramón y Cajal, S., 1909–1911, Histologie du système nerveux de l’homme et des vertébrés (L. Azoulay, transi.), 2 vols., A. Maloîne, Paris (reprinted: Consejo Superior de Investigaciones Cientificas, Madrid, 1952 and 1955 ).Google Scholar
  414. Ramón y Cajal, S., 1929, Etude sur la neurogenèse de quelques vertébrés, Madrid (reprinted: Studies on Vertebrate Neurogenesis, (L. Guth, translator), Charles C Thomas, Springfield, Illinois.Google Scholar
  415. Rauschecker, J. P., and Singer, W., 1979, Changes in the circuitry of the kitten: Visual cortex are gated by post-synaptic activity, Nature (London) 280: 58–60.CrossRefGoogle Scholar
  416. Rauschecker, J. P., and Singer, W., 1981, The effects of early visual experience on the cat’s visual cortex and their possible explanation by synapses, J. Physiol. (London) 310: 215–239.Google Scholar
  417. Regan, D., and Beverley, K. I., 1982, How do we avoid confounding the direction we are looking and the direction we are moving? Science 215: 194–196.CrossRefGoogle Scholar
  418. Regan, D., and Cynader, M., 1982, Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of stimulus speed, Invest. OphthalmoL Visual Sci. 22: 535–550.Google Scholar
  419. Reichardt, W. E., and Poggio, T., 1981 (eds.), Theoretical Approaches in Neurobiology, M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  420. Riesen, A. H., and Aarons, L., 1959, Visual movement and intensity discrimination in cats after early deprivation of pattern vision, J. Comp. Physiol. Psychol. 52: 142–149.CrossRefGoogle Scholar
  421. Roach, F. C., 1945, Differentiation of the central nervous system after axial reversals of the medullary plate of Amblystoma, J. Exp. Zool. 99: 53–77.CrossRefGoogle Scholar
  422. Robinson, J. S., and Fish, S. E., 1974, A cat’s form experienced but visuo-motor deprived eye lacks focal vision, Dev. Psychobiol. 7: 331–342.CrossRefGoogle Scholar
  423. Rodieck, R. W., 1973, The Vertebrate Retina: Principles of Structure and Function, W. H. Freeman, San Francisco.Google Scholar
  424. Roth, R. L., 1974, Retinotopic organization of goldfish optic nerve and tract, Anat. Rec. 178: 453.Google Scholar
  425. Rudel, R., and Denkla, M. B., 1974, Relation of forward and backward digit repetition to neurological impairment in children with learning disabilities, Neuropsychologia 12: 109–118.CrossRefGoogle Scholar
  426. Rudel, R., Teuber, H. L., and Twitchell, T. E., 1974, Levels of impairment of sensorimotor early damage, Neuropsychologia 12: 95–108.CrossRefGoogle Scholar
  427. Saint-Anne Dargassies, S., 1966, Neurological maturation of the premature infant of 28–41 weeks gestational age, in: Human Development ( F. Falkner, ed.), pp. 306–325, W. B. Saunders, Philadelphia.Google Scholar
  428. Sarnat, H. B., and Netsky, M. G., 1974, Evolution of the Nervous System, Tavistock, Oxford.Google Scholar
  429. Saul, R., and Sperry, R. W., 1968, Absence of commissurotomy symptoms with agenesis of the corpus callosum, Neurology (New York) 18: 307.Google Scholar
  430. Saunders, J. W., Jr., and Fallon, J. F., 1966, Cell death in morphogenesis, in: Major Problems in Developmental Biology ( M. Locke, ed.), pp. 289–314, Academic Press, New York.Google Scholar
  431. Saxén, L., 1972, Interactive mechanisms in morphogenesis, in: Tissue Interactions in Carcinogenesis ( D. Tarin, ed.), pp. 49–80, Academic Press, London.Google Scholar
  432. Saxén, L., and Toivonen, S., 1962, Primary Embryonic Induction, Academic Press, New York.Google Scholar
  433. Scalia, R., and Arango, V., 1983, The anti-retinotopic organization of the frog’s optic nerve, Brain Res. 266: 121.CrossRefGoogle Scholar
  434. Scalia, F., and Fite, K., 1974, A retinotopic analysis of the central connections of the optic nerve in the frog, J. Comp. Neurol. 158: 455–478.CrossRefGoogle Scholar
  435. Scarf, B., and Jacobson, M., 1974, Development of binocularly driven single units in frogs raised with asymmetrical visual stimulation, Exp. Neurol. 42: 669–686.CrossRefGoogle Scholar
  436. Schaffer, H. R. (ed.), 1977, Studies in Mother-Infant Interaction: The Loch Lomond Symposium, Academic Press, London.Google Scholar
  437. Scheibel, M. E., Lindsay, R. D., Tomiyasu, U., and Scheibel, A. B., 1975, Dendritic changes in aging human cortex, Anat. Rec. 181: 471.Google Scholar
  438. Schmidt, J. T., 1978, Retinal fibers alter tectal positional markers during the expansion of the retinal projection in goldfish, J. Comp. Neurol. 177: 279–300.CrossRefGoogle Scholar
  439. Schneider, G. E., 1967, Contrasting visuomotor functions of tectum and cortex in the golden hamster, Psychol. Forsch. 31: 52–62.CrossRefGoogle Scholar
  440. Schneider, G. E., 1969, Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions, Science 163: 895902.Google Scholar
  441. Schneider, G. E., 1973, Early lesions of superior colliculus: Factors affecting the formation of abnormal retinal projections, Brain Behay. Evol. 8: 73–109.CrossRefGoogle Scholar
  442. Schneider, G. E., 1976, Growth of abnormal neural connections following focal brain lesions: Constraining factors and functional effects, in: Neurosurgical Treatment in Psychiatry ( W. H. Sweet, S. Obrador, and J. G. Martin-Rodrigues, eds.), pp. 5–26, University Park Press, Baltimore.Google Scholar
  443. Schneider, G. E., 1981, Early lesions and abnormal neuronal connections: Developmental rules can lead axons astray, with functional consequences, Trends Neurosci. 4: 187–192.CrossRefGoogle Scholar
  444. Schneider, G. E., and Jhaveri, S. R., 1974, Neuroanatomical correlates of spared or altered function after brain lesions in the newborn hamster, in: Plasticity and Recovery of Function in the Central Nervous System ( D. G. Stein, J. J. Rosen, and N. Butters, eds.), pp. 65–109, Academic Press, New York.Google Scholar
  445. Schneider, G. E., Jhaveri, S., Edwards, M. A., and So, K.-F., 1985, Regeneration, re-routing and redistribution of axons after early lesions: Changes with age and functional impact, in: Recent Achievements in Restorative Neurology, Vol. 1, Upper Motor Neuron Functions and Dysfunctions ( J. E. Contra and M. R. Dimitrijevic, eds.), Karger, Basel.Google Scholar
  446. Scholes, J. H., 1979, Nerve fiber topography in the retinal projection to the tectum, Nature (London) 278: 620624.Google Scholar
  447. Schwenk, G. C., and Hibbard, E., 1977, An autoradio-graphic study of optic fiber projections from eye grafts in eyeless mutant exolotls, Exp. Neurol. 55: 498–503.CrossRefGoogle Scholar
  448. Scott, M. Y., 1975, Functional capacity of compressed retinotectal projection in goldfish, Anat. Rec. 181:474. Scott, S. A., 1975, Persistence of foreign innervation on reinnervated goldfish extraocular muscles, Science 189: 644–646.CrossRefGoogle Scholar
  449. Sequeland, E. R., and DeLucia, C. A., 1969, Visual reinforcement of non-nutritive sucking in human infants, Science 165: 1144–1146.CrossRefGoogle Scholar
  450. Sharma, S. C., 1972, Reformation of retinotectal projections after various tectal ablations in adult goldfish, Exp. Neurol. 34: 171–182.CrossRefGoogle Scholar
  451. Sharma, S. C., 1972, Retinotectal connexions of a heterotopic eye, Nature New Biol. 238: 286–287.CrossRefGoogle Scholar
  452. Sharma, S. C., and Gaze, R. M., 1971, The retinotopic organization of visual responses from tectal reimplants in adult goldfish, Arch. Ital. Biol. 109: 357–366.Google Scholar
  453. Sharma, S. C., and Tung, Y. L., 1979, Interactions between nasal and temporal hemiretinal fibers in adult goldfish tectum, Neuroscience 4: 113–119.CrossRefGoogle Scholar
  454. Shatz, C., 1977, Abnormal interhemispheric connections in the visual system of Boston Siamese cats: A physiological study, J. Comp. Neurol. 171: 229–246.CrossRefGoogle Scholar
  455. Sherman, S. M., 1972, Development of interocular alignment in cats, Brain Res. 37: 187–198.CrossRefGoogle Scholar
  456. Sherman, S. M., Guillery, R. W., Kaas, J. H., and Sanderson, K. J., 1974, Behavioral, electrophysiological and morphological studies of binocular competition in the development of the geniculo-cortical pathways of cats, J. Comp. Neurol. 158: 1–18.CrossRefGoogle Scholar
  457. Shkol’nik-Yarros, E. G., 1971, Neurones and Interneuronal Connections of the Central Visual System (B. Haigh, translation), Plenum Press, New York.Google Scholar
  458. Shlaer, R., 1971, Shift in binocular disparity causes compensating change in the cortical structure of kittens, Science 173: 638–641.CrossRefGoogle Scholar
  459. Sidman, R. L., 1961, Histogenesis of mouse retina studied with thymidine-3H, in: Structure of the Eye (G. K. Smelser, ed.), pp. 487–505, Academic Press, New York. Sidman, R. L., and Rakic, P., 1973, Neuronal migration, with special reference to developing human brain: A review, Brain Res. 62: 1–35.Google Scholar
  460. Slater, A. M., and Findlay, J. M., 1975, Binocular fixation in the newborn baby, J. Exp. Child Psycho!. 20: 248273.Google Scholar
  461. Smith, A., 1966, Speech and other functions after left (dominant) hemispherectomy, J. Neurol. Neurosurg. Psychiatry 29: 467–471.CrossRefGoogle Scholar
  462. Spalding, D. A., 1873, Instinct with original observations on young animals, Macmillans Magazine 27: 282–293 (reprinted in Br. J. Anim. Behay. 2:2–11).Google Scholar
  463. Spemann, H., 1938, Embryonic Development and Induction, Yale University Press, New Haven.Google Scholar
  464. Spemann, H., and Mangold, H., 1924, Über Induktion von Embronalanlagen durch Implantation artfremder Organisatoren, Roux Arch. 100: 599–638.Google Scholar
  465. Sperry, R. W., 1943, Visuomotor coordination in the newt (Triturus viridescens) after regeneration of the optic nerves, J. Comp. Neurol. 79: 33–55.CrossRefGoogle Scholar
  466. Sperry, R. W., 1944, Optic nerve regeneration with return of vision in anrreans, J. Neurophysiol. 7: 57–69.Google Scholar
  467. Sperry, R. W., 1945, Restoration of vision after crossing of optic nerves and after contralateral transposition of the eye, J. Neurophysiol. 8: 15–28.Google Scholar
  468. Sperry, R. W., 1951a, Mechanisms of neural maturation, in: Handbook of Experimental Psychology ( S. S. Stevens, ed.), pp. 236–280, Wiley, New York.Google Scholar
  469. Sperry, R. W., 195 lb, Regulative factors in orderly growth of neural circuits, Growth Symp. 10: 63–87.Google Scholar
  470. Sperry, R. W., 1952, Neurology and the mind-brain problem, Am. Sci. 40: 291–312.Google Scholar
  471. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. U.S.A. 50: 703–710.CrossRefGoogle Scholar
  472. Sperry, R. W., 1965, Embryogenesis of behavioral nerve nets, in: Organogenesis ( R. L. De Haan and H. Ursprung, eds.), pp. 161–186, Holt, New York.Google Scholar
  473. Sperry, R. W., 1970, Perception in the absence of the neo-cortical commissures, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 48: 123–138.Google Scholar
  474. Sperry, R. W., 1974, Lateral specialization in the surgically separated hemispheres, in: The Neurosciences: Third Study Program ( F. O. Schmitt and F. G. Worden, eds.), pp. 5–20, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  475. Sperry, R. W., and Hibbard, E., 1968, Regulative factors in the orderly growth of retino-tectal connections, in: Growth of the Nervous System ( G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 41–52, Churchill, London.Google Scholar
  476. Sperry, R. W., Gazzaniga, M. S., and Bogen, J. E., 1969, Interhemispheric relationships: The neocortical commissures; syndromes of hemisphere deconnection, in: Handbook of Clinical Neurology ( P. J. Vinken and G. W. Bruyn, eds.), Vol. 4, pp. 273–290, North-Holland, Amsterdam.Google Scholar
  477. Sprague, J. M., Levy, J., DiBerardino, A., and Berlucchi, G., 1977, Visual cortical areas mediating form discrimination in the cat, J. Comp. Neurol. 172: 441–488.CrossRefGoogle Scholar
  478. Sprague, J. M., Hughes, H. C., and Berlucchi, G., 1981, Cortical mechanisms in pattern and form perception, in: Brain Mechanisms and Perceptual Awareness ( O. Pompeiano and C. Ajmore Marsan, eds.), pp. 107–132, Raven Press, New York.Google Scholar
  479. Stanfield, B. B., 1984, Postnatal reorganization of cortical projections: The role of collateral elimination, Trends Neurosci. 7: 37–41.CrossRefGoogle Scholar
  480. Stein, B. E., Labos, E., and Kruger, L., 1973, Sequence of changes in properties of neurones of superior colliculus of the kitten during maturation, J. Neurophysiol. 36: 667–679.Google Scholar
  481. Stern, D. N., 1985, The Interpersonal World of the Infant: A View from Psychoanalysis and Developmental Psychology, Basic Books, New York.Google Scholar
  482. Stone, L. S., 1944, Functional polarization in retinal development and its reestablishment in regenerated retinae of rotated eyes, Proc. Soc. Exp. Biol. Med. 57: 1314.Google Scholar
  483. Stone, L. S., 1959, Experiments testing the capacity of iris to regenerate neural retina in eyes of adult newts, J. Exp. Zool. 142: 285–308.CrossRefGoogle Scholar
  484. Stone, L. S., 1960, Polarization of the retina and development of vision, J. Exp. Zool. 145: 85–93.CrossRefGoogle Scholar
  485. Straznicky, K., 1978, The acquisition of tectal positional specification in Xenopus, Neurosci. Lett. 9: 177–184.CrossRefGoogle Scholar
  486. Straznicky, K., and Gaze, R. M., 1971, The growth of the retina in Xenopus laevis: An autoradiographic study, J. Embryo!. Exp. Morpho!. 26: 67–79.Google Scholar
  487. Straznicky, K., and Gaze, R. M., 1972, The development of the tectum in Xenopus laevis: An autoradiographic study, J. Embryo!. Exp. Morpho!. 28: 87–115.Google Scholar
  488. Straznicky, K., and Gaze, R. M., 1982, The innervation of a virgin tectum by a double-temporal or a double-nasal eye in Xenopus, J. Embryo!. Exp. Morpho!. 68: 921.Google Scholar
  489. Straznicky, K., and Tay, D., 1977, Retinal growth in normal double dorsal and double ventral eyes in Xenopus, J. Embryo!. Exp. Morpho!. 40: 175–185.Google Scholar
  490. Stryker, M. P., 1981, Soc. Neurosci. Abstr. 7:842. Studdert-Kennedy, M., 1983, On learning to speak, Hum. Neu rob i ol. 2: 191–196.Google Scholar
  491. Sturmer, C., 1981, Modified retinotectal projection in goldfish: A consequence of the position of retinal lesions, in: Lesion-induced Neuronal Plasticity in Sensorimotor Systems ( H. Rohr and W. Precht, eds.), pp. 369–376, Springer-Verlag, Berlin.Google Scholar
  492. Swindale, N. V., 1982, The development of columnar systems in the mammalian visual cortex. The role of innate and environmental factors, Trends Neurosci. 5: 235–241.CrossRefGoogle Scholar
  493. Székely, G., 1954, Untersuchung der Entwicklung optischer Reflex mechanismem an Amphibien larven, Acta Physiol. Acad. Sci. Hung. 6 (Suppl. 18).Google Scholar
  494. Székely, G., 1957, Regulationstendenzen in der Ausbildung der “Funktionellen Spezifität” der Retinoanlage bei Triturus vulgaris, Arch. Entwichlungs. Org. 150: 4860.Google Scholar
  495. Szentagothai, M. J., and Arbib, M. A., 1975, The module concept in cerebral cortex architecture, Brain Res. 95: 475–496.CrossRefGoogle Scholar
  496. Talbot, S. A., and Marshall, W. H., 1941, Physiological studies on neural mechanisms of visual localization and discrimination, Am. J. Ophthalmol. 24: 1255–1263.Google Scholar
  497. Taub, E., 1968, Prism compensation as a learning phenomenon: A phylogenetic comparison, in: The Neuro-psychology of Spatially Oriented Behavior ( S. F. Freedman, ed.), pp. 173–192, Dorsey Press, Homewood, Illinois.Google Scholar
  498. Tees, R. C., 1976, Perceptual development in mammals, in: Neural and Behavioral Specificity: Studies on the Development of Behavior and the Nervous System, Vol. 3 ( G. Gottlieb, ed.), pp. 281–326, Academic Press, New York.Google Scholar
  499. Teller, D. Y., 1981, The development of visual acuity in human and monkey infants, Trends Neurosci. 4: 21–24.CrossRefGoogle Scholar
  500. Teszner, Tzavaras, A., Gruner, J., and Hécaen, H., 1972, L’asymétrie droite-gauche du planum temporale: Apropos de l’étude anatomique de 100 cerveaux, Rev. Neurol. 126: 444–449.Google Scholar
  501. Teuber, H.-L., 1960, Perception, in: Handbook of Physiology, Section 1: Neurophysiology ( J. Field, H. W. Magoun, and V. E. Hall, eds.), Vol. III, pp. 1595–1668, American Physiological Society, Washington, D.C.Google Scholar
  502. Toivonen, S., and Saxén, L., 1968, Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios, Science 159:539–5140.Google Scholar
  503. Trehub, S. E., 1973, Infants’ sensitivity to vowel and tonal contrasts, Dev. Psycho!. 9: 91–96.CrossRefGoogle Scholar
  504. Trevarthen, C., 1968a, Vision in fish: The origins of the visual frame for action in vertebrates, in: The Central Nervous System and Fish Behavior ( D. Ingle, ed.), pp. 61–94, University of Chicago Press, Chicago.Google Scholar
  505. Trevarthen, C., 1968b, Two mechanisms of vision in primates, Psych. Forsch. 31: 299–337.CrossRefGoogle Scholar
  506. Trevarthen, C., 1972, Brain bisymmetry and the role of the corpus callosum in behavior and conscious experience, in: Cerebral Interhemispheric Relations ( J. Cernacek and F. Podovinsky, eds.), pp. 319–333, Slovak Academy of Sciences, Bratislava.Google Scholar
  507. Trevarthen, C., 1974a, L’action dans l’espace et la perception de l’espace; mécanismes cérébraux de base, in: De l’espace corporel à l’espace ecologique ( F. Bresson, ed.), pp. 65–80, Presses Universitaires de France, Paris.Google Scholar
  508. Trevarthen, C., 1974b, Cerebral embryology and the split brain, in: Hemispheric Disconnection and Cerebral Function ( M. Kinsbourne and W. L. Smith, eds.), pp. 208–236, Charles C Thomas, Springfield, Illinois.Google Scholar
  509. Trevarthen, C., 1974c, The psychobiology of speech development, in: Language and Brain: Developmental Aspects (E. Lenneberg, ed.), Neurosciences Research Program Bulletin, 12: 570–585.Google Scholar
  510. Trevarthen, C., 1977, Descriptive analyses of infant communication behavior, in: Studies in Mother-Infant Interaction: The Loch Lomond Symposium ( H. R. Schaffer, ed.), pp. 227–270, Academic Press, London.Google Scholar
  511. Trevarthen, C., 1978a, Modes of perceiving and modes of acting, in: Modes of Perceiving and Processing Information ( H. Pick and E. Saltzman, eds.), pp. 99–136, U.S. Social Science Research Council.Google Scholar
  512. Trevarthen, C., 1978b, Manipulative strategies of baboons and the origins of cerebral asymmetry, in: The Asymmetrical Function of the Brain ( M. Kinsbourne, ed.), pp. 329–391, Cambridge University Press, Cambridge.Google Scholar
  513. Trevarthen, C., 1979, Communication and cooperation in early infancy. A description of primary intersubjectivity, in: Before Speech, The Beginnings of Human Communication ( M. Bullowa, ed.), pp. 321–346, Cambridge University Press, Cambridge.Google Scholar
  514. Trevarthen, C., 1979, The tasks of consciousness, how could the brain do them?, in: Brain and Mind, (G. E. W., Wolstenholme, and M. O’Connor, eds.) CIBA Foundation Symposium 69 (New Series), pp. 187–217, Excerpta Medica, Amsterdam.Google Scholar
  515. Trevarthen, C., 1980, Neurological development and the growth of psychological functions, in: Developmental Psychology and Society ( J. Sants, ed.), pp. 46–95, Macmillan, London.Google Scholar
  516. Trevarthen, C., 1982, Basic patterns of psychogenetic change in infancy, in: Regressions in Mental Development: Basic Phenomena and Theories ( T. G. Bever, ed.), pp. 7–46, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  517. Trevarthen, C., 1983a, Cerebral mechanisms for language: Prenatal and postnatal development, in: Neuro-psychology of Language, Reading and Spelling ( U. Kirk, ed.), pp. 45–80, Academic Press, New York.Google Scholar
  518. Trevarthen, C., 1983b, Interpersonal abilities of infants as generators for transmission of language and culture, in: The Behaviour of Human Infants ( A. Oliverio and M. Zapella, eds.), pp. 145–176, Plenum Press, New York.CrossRefGoogle Scholar
  519. Trevarthen, C., 1984a, How control of movements develops, in: Human Motor Actions: Bernstein Reassessed ( H. T. A. Whiting, ed.), pp. 223–261, Elsevier-NorthHolland, Amsterdam.CrossRefGoogle Scholar
  520. Trevarthen, C., 1984b, Hemispheric specialization, in: Handbook of Physiology, Section I: The Nervous System, Vol. III: Sensory Processes ( I. Darian-Smith, ed.), pp. 1129–1190, American Physiological Society, Bethesda, Maryland.Google Scholar
  521. Trevarthen, C., 1984c, Biodynamic structures, cognitive correlates of motive sets and development of motives in infants, in: Cognition and Motor Processes ( W. Prinz and A. F. Saunders, eds.), pp. 327–350, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  522. Trevarthen, C., 1984d, Emotions in infancy: Regulators of contacts and relationships with persons, in: Approaches to Emotion ( K. Scherer and P. Edman, eds.), pp. 129–157, Lawrence Erlbaum Associates, Hillsdale, New Jersey.Google Scholar
  523. Trevarthen, C., Murray, L., and Hubley, P., 1981, Psye chology of infants, in: Scientific Foundations of Clinical Pediatrics (J. Davis and J. Dobbing), pp. 217–271, Heinemann Medical Books, London.Google Scholar
  524. Trevarthen, C., and Sperry, R. W., 1973, Perceptual unity of the ambient visual field in human commissurotomy patients, Brain 96: 547–570.CrossRefGoogle Scholar
  525. Twitchell, T. E, 1965, The automatic grasping responses of infants, Neuropsychologia 3: 247–259.CrossRefGoogle Scholar
  526. Udin, S. B., 1977, Rearrangement of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation, J. Comp. Neurol. 173: 561–582.CrossRefGoogle Scholar
  527. Udin, S. B., 1983, Abnormal visual input leads to development of abnormal axon trajectories in frogs, Nature (London) 301: 336–338.CrossRefGoogle Scholar
  528. Ullman, S., 1979, The Interpretation of Visual Motion, M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  529. Uzgiris, I. C., 1974, Patterns of vocal and gestural imitation in infants, in: The Competent Infant ( L. J. Stone, H. T. Smith, and L. B. Murphy, eds.), pp. 599–604, Tavistock, London.Google Scholar
  530. Valverde, F., 1971, Rate and extent of recovery from dark rearing in the visual cortex of the mouse, Brain Res. 33: 1–11.CrossRefGoogle Scholar
  531. Van der Loos, H., 1977, Structural changes in the cerebral cortex upon modification of the periphery: Bands in somatosensory cortex, Philos. Trans. R. Soc. (London) B. 278: 373–376.CrossRefGoogle Scholar
  532. Van der Loos, H., 1979, The development of topological equivalences in the brain, in: Neural Growth and Differentiation ( E. Meisami and M. A. B. Brazier, eds.), pp. 331–336, Raven Press, New York.Google Scholar
  533. Van der Loos, H., and Dörfl, J., 1978, Does the skin tell the somatosensory cortex how to construct a map of the periphery?, Neurosci. Lett. 7: 23–30.CrossRefGoogle Scholar
  534. Van Essen, D. C., and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.CrossRefGoogle Scholar
  535. Van Sluyters, R. C., and Blakemore, C., 1973, Experimental creation of unusual neuronal properties in visual cortex of kitten, Nature (London) 246: 506–508.CrossRefGoogle Scholar
  536. Vinken, P. J., and Bruyn, R. W. (eds.), 1969, Handbook of Clinical Neurology: Vol. 3: Disorders of Higher Nervous Activity; Vol. 4: Disorders of Speech Perception and Symbolic Behavior, North-Holland, Amsterdam.Google Scholar
  537. Vital-Durand, F., and Jeannerod, M., 1974, Maturation of the optkinetic response: Genetic and environmental factors, Brain Res. 71: 249–257.CrossRefGoogle Scholar
  538. Von Békésy, G., 1967, Sensory Inhibition, Princeton University Press, Princeton, New Jersey.Google Scholar
  539. Von Senden, M., 1960, Space and Sight: The Perception of Space and Shape in the Congenitally Blind Before and After Operation (translated by P. Heath ), Methuen, London.Google Scholar
  540. Waber, D. P., 1976, Sex differences in cognition: A function of maturation rate? Science 192: 572–573.CrossRefGoogle Scholar
  541. Wada, J. A., Clarke, R., and Hamm, A., 1975, Cerebral hemispheric asymmetry in humans: Cortical speech zones in 100 adult and 100 infant brains, Arch. Neurol. 32: 239–246.CrossRefGoogle Scholar
  542. Waddington, C. H., 1966, Principles of Development and Differentiation, Macmillan, New York.Google Scholar
  543. Walk, R. D., and Bond, E. K., 1971, The development of visually guided reaching in monkeys reared without sight of the hands, Psychon. Sci. 23: 115–116.Google Scholar
  544. Walk, R. D., and Gibson, E. J., 1961, A comparative and analytic study of visual depth perception, Psychol. Monogr. 75: No. 519.Google Scholar
  545. Webster, W. R., and Aitkin, L. M., 1975, Central auditory processing, in: Handbook of Psychobiology ( M. S. Gazzaniga and C. Blakemore, eds.), pp. 325–364, Academic Press, New York.CrossRefGoogle Scholar
  546. Weiskrantz, L., Warrington, E. K., Saunders, M. P., and Marshall, J., 1974, Visual capacity in the hemianopic field following a restricted occipital ablation, Brain 97: 709–728.CrossRefGoogle Scholar
  547. Weiss, P., 1939, Principles of Development, Holt, Rinehart and Winston, New York.Google Scholar
  548. Werner, H., 1961, Comparative Psychology of Mental Development (revised ed.), Science Editions, New York.Google Scholar
  549. White, M. J., 1969, Laterality differences in perception: A review, Psychol. Bull. 72: 387–405.CrossRefGoogle Scholar
  550. White, B. L., Castle, P., and Held, R., 1964, Observations on the development of visually-directed reaching, Child Dev. 35: 349–364.Google Scholar
  551. Whitelaw, V. A., and Cowan, J. D., 1981, Specificity and plasticity of retinal connections: A computational model, J. Neurosci. 1:1369–1387.Google Scholar
  552. Whiting, H. T. A. (ed.), 1984, Human Motor Actions—Bernstein Reassessed, Elsevier-North-Holland, Amsterdam.Google Scholar
  553. Whitteridge, D., 1973, Visual projections to the cortex, in: Handbook of Sensory Physiology (R. Jung, ed.), Vol. VII/3/B, pp. 247–268, Springer-Verlag, Berlin.Google Scholar
  554. Wickelgren, B., 1972, Some effects of visual deprivation on the cat superior colliculus, Invest. Ophthalmol. 11:460–467.Google Scholar
  555. Wickelgren, B., and Sterling, P., 1969, Influence of visual cortex on receptive fields in the superior colliculus of the cat, J. Neurophysiol. 32: 16–23.Google Scholar
  556. Wiesel, T. N., 1982, Postnatal development of the visual cortex and the influence of environment, Nature (London) 299: 583–591.CrossRefGoogle Scholar
  557. Wiesel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26: 1003–1017.Google Scholar
  558. Wiesel, T. N., and Hubel, D. H., 1965, Extent of recovery from the effects of visual deprivation in kittens, J. Neurophysiol. 28: 1060–1072.Google Scholar
  559. Wiesel, T. N., and Hubel, D. H., 1974, Ordered arrangement of orientation columns in monkeys lacking visual experience, J. Comp. Neurol. 158: 307–318.CrossRefGoogle Scholar
  560. Willshaw, D. J., and von der Malsburg, C., 1976, How patterned neural connections can be set up by self-organization, Proc. R. Soc. Lond. Ser. B. 194: 431–445.CrossRefGoogle Scholar
  561. Wilson, P. D., and Riesen, A. H., 1966, Visual development in rhesus monkeys neonatally deprived of patterned light, J. Comp. Physiol. Psycho!. 61: 87–95.CrossRefGoogle Scholar
  562. Windle, W. F., 1970, Development of neural elements in human embryos of four to seven weeks gestation, Exp. Neurol. (Suppl.) 5: 44–83.Google Scholar
  563. Witelson, S. F., and Pallie, W., 1973, Left hemisphere specialization for language in the newborn: Neuroanatomical evidence of asymmetry, Brain 96: 641–646.CrossRefGoogle Scholar
  564. Wolff, P. H., 1966, The causes, controls and organization of behavior in the neonate, Psychological Issues, Monograph Series, Vol. 5, No. 1, Monogr. 17, International Universities Press, New York.Google Scholar
  565. Wolff, P. H., 1968, Stereotypic behavior and development, Can. Psycho!. 9: 474–484.CrossRefGoogle Scholar
  566. Wolff, P. H., 1969, The natural history of crying and other vocalizations in early infancy, in: Determinants of Infant Behaviour ( B. M. Foss, ed.), Vol. IV, pp. 81–110, Methuen, London.Google Scholar
  567. Wolpert, L., 1971, Positional information and pattern formation, Curr. Top. Dev. Biol. 6: 183–224.CrossRefGoogle Scholar
  568. Woods, B. T., 1980, Restricted effects of right hemisphere lesions after age one: Wechsler Test data, Neuropsychologia 18: 65–70.CrossRefGoogle Scholar
  569. Woods, B. T., and Teuber, H.-L., 1973, Early onset of complementary specialization of cerebral hemispheres in man, Trans. Am. Neurol. Assoc. 98: 113–115.Google Scholar
  570. Woods, B. T., and Teuber, H.-L., 1978, Changing patterns of childhood aphasia, Ann. Neurol. 3: 273–280.CrossRefGoogle Scholar
  571. Yakovlev, P. I., 1962, Morphological criteria of growth and maturation of the nervous system in man, in: Mental Retardation, Research Publications of the Association for Research on Nervous and Mental Diseases, Vol. 39, pp. 3–46, Association for Research on Nervous and Mental Diseases, New York.Google Scholar
  572. Yakovlev, P. I., and Lecours, A. R., 1967, The myelogenetic cycles of regional maturation of the brain, in: Regional Development of the Brain in Early Life ( A. Minkowski, ed.). pp. 3–70, Blackwell, Oxford.Google Scholar
  573. Yarbus, A. L., 1967, Eye Movements and Vision, Plenum Press, New York.Google Scholar
  574. Yoon, M. G., 1971, Reorganization of retinotectal projection following surgical operations on the optic tectum in goldfish, Exp. Neurol. 33: 395 – 411.CrossRefGoogle Scholar
  575. Yoon, M. G., 1972, Reversibility of the reorganization of retinotectal projection in goldfish, Exp. Neurot. 35: 565–577.Google Scholar
  576. Yoon, M. G., 1973, Retention of the original topographic polarity by the 180° rotated tectum reimplant in young adult goldfish, J. Physiol. (London) 233: 575–588.Google Scholar
  577. Yoon, M. G., 1975, Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish, J. Physiol. (London) 252: 137–158.Google Scholar
  578. Yoon, M. G., 1986, Neural reconnection between the eye and the brain in goldfish, in: Brain Circuits and Functions of the Mind: Essays in Honor of Roger W. Sperry (C. Trevarthen, ed.), Cambridge University Press, New York.Google Scholar
  579. Zaidel, E., 1978, Auditory language comprehension in the right hemisphere following cerebral commissurotomy and hemispherectomy: A comparison with child language and aphasia, in: Language Acquisition and Language Breakdown: Parallels and Divergences ( A. Cara-mazza and E. B. Zurif, eds.), pp. 229–275, Johns Hopkins University Press, Baltimore.Google Scholar
  580. Zaporozhets, A. V., 1965, The development of perception in the preschool child, in: European Research in Child Development (P. H. Mussen, ed.), Monogr. Soc. Res. Child Devel. 30 (Ser. No. 100): 82–101.Google Scholar
  581. Zeki, S. M., 1973, Colour coding in Rhesus monkey pre-striate cortex, Brain Res. 53: 422–427.CrossRefGoogle Scholar
  582. Zeki, S. M., 1974, The mosaic organization of the visual cortex in the monkey, in: Essays on the Nervous System—Festschrift for J. Z. Young ( R. Bellairs and E. G. Grey, eds.), pp. 327–343, Oxford University Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Colwyn B. Trevarthen
    • 1
  1. 1.Department of PsychologyUniversity of EdinburghEdinburghScotland

Personalised recommendations