Advertisement

Design of Ceramic Materials for Chemical Sensors with Intelligent Properties

  • Enrico Traversa

Abstract

Research in the field of materials has always been oriented towards the improvement of their performance and of their reliability. Recently, however, materials R&D has taken a new direction, searching for novel functions.1 The development of materials with intelligent functions is a key point for the development of novel technologies, which should be environment and user friendly.2 Intelligent materials are those materials which are able to modify and to adapt themselves to external changes, mimicking the behaviour of living organisms.3 One class of materials which has outstanding potential for application as intelligent materials is ceramics, because they may have completely different properties.

Keywords

Schottky Barrier Humidity Sensor Ti02 Film Intelligent Material Relative Humidity Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Yanagida, Intelligent materials — a new frontier, Angew. Chem. 100:1443 (1988).CrossRefGoogle Scholar
  2. 2.
    H. Yanagida, Intelligent ceramics, Ferro electrics 102:251 (1990).CrossRefGoogle Scholar
  3. 3.
    CA. Rogers, From the editor, J. Intelligent Mater. Systems and Structures 1:3 (1990).CrossRefGoogle Scholar
  4. 4.
    R.E. Newnham and G.R. Ruschau, Smart electroceramics, J. Am. Ceram. Soc. 74:463 (1991).CrossRefGoogle Scholar
  5. 5.
    N. Yamazoe and N. Miura, Environmental gas sensing, in: “Techn. Digest of the 7th Intern. Conf. on Solid-State Sensors and Actuators (Transducers 93),” Yokohama, Japan (1993).Google Scholar
  6. 6.
    T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, A new detector for gaseous components using semiconductive thin films, Anal. Chem. 34:1502 (1962).CrossRefGoogle Scholar
  7. 7.
    J.G. Fagan and V.R.W. Amarakoon, Reliability and reproducibility of ceramic sensors: part III, humidity sensors, Am. Ceram. Soc. Bull. 72 [3]: 119 (1993).Google Scholar
  8. 8.
    E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments, Sensors and Actuators B 23:135 (1995).CrossRefGoogle Scholar
  9. 9.
    B.M. Kulwicki, Humidity sensors, J. Am. Ceram. Soc. 74:697 (1991).CrossRefGoogle Scholar
  10. 10.
    N. Yamazoe, New approaches for improving semiconductor gas sensors, Sensors and Actuators B 5:7 (1991).CrossRefGoogle Scholar
  11. 11.
    K.D. Schierbaum, Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sensors and Actuators B in press (1995).Google Scholar
  12. 12.
    Y. Nakamura, T. Tsurutani, M. Miyayama, O. Okada, K. Koumoto, and H. Yanagida, The detection of carbon monoxide by the oxide-semiconductor heterocontacts, J. Chem. Soc. Jpn. 1987:477 (1987).Google Scholar
  13. 13.
    K. Kawakami and H. Yanagida, Effects of water vapor on the electrical conductivity of the interface of semiconductor ceramic-ceramic contacts, J. Ceram. Soc. Jpn. 87:112 (1979).Google Scholar
  14. 14.
    Y. Nakamura, H. Yoshioka, M. Miyayama, H. Yanagida, T. Tsurutani, and Y. Nakamura, Selective CO gas sensing mechanism with CuO/ZnO heterocontact, J. Electrochem. Soc. 137:940 (1990).CrossRefGoogle Scholar
  15. 15.
    E. Traversa, M. Miyayama, and H. Yanagida, Gas sensitivity of ZnO/La2CuO4 heterocontacts, Sensors and Actuators B 17:257 (1994).CrossRefGoogle Scholar
  16. 16.
    E. Traversa and A. Bearzotti, Humidity sensitive electrical properties of dense ZnO with non-ohmic electrode, J. Ceram. Soc. Jpn. 103:11 (1995).CrossRefGoogle Scholar
  17. 17.
    G. Montesperelli, A. Pumo, E. Traversa, G. Gusmano, A. Bearzotti, A. Montenero, and G. Gnappi, Solgel processed TiO2-based thin film as innovative humidity sensors, Sensors and Actuators B in press (1995).Google Scholar
  18. 18.
    E. Traversa, A. Bianco, G. Montesperelli, G. Gusmano, A. Bearzotti, M. Miyayama, and H. Yanagida, ZnO/La2CuO4 hetero-contacts as humidity sensors, in: “Ferroic Materials: Design, Preparation, and Characteristics,” A.S. Bhalla, K.M. Nair, I.K. Lloyd, H. Yanagida, and D.A. Payne, eds., The Am. Ceram. Soc, Westerville (1994).Google Scholar
  19. 19.
    Y. Nakamura, M. Ikejiri, M. Miyayama, K. Koumoto, and H. Yanagida, The current-voltage characteristics of CuO/ZnO heterojunctions, J. Chem. Soc. Jpn. 1985:1154 (1985).Google Scholar
  20. 20.
    Y. Ushio, M. Miyayama, and H. Yanagida, Effects of interface states on gas sensing properties of a CuO/ZnO thin film heterojunction, Sensors and Actuators B 17:221 (1994).CrossRefGoogle Scholar
  21. 21.
    E. Traversa, A. Bearzotti, M. Miyayama, and H. Yanagida, Study of the conduction mechanism of La2CuO4/ZnO heterocontacts at different relative humidities, Sensors and Actuators B in press (1995).Google Scholar
  22. 22.
    E. Traversa and A. Bearzotti, A novel humidity detection mechanism for ZnO dense pellets, Sensors and Actuators B 23:181 (1995).CrossRefGoogle Scholar
  23. 23.
    K.D. Schierbaum, U.K. Kirner, J.F. Geiger, and W. Göpel, Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2, Sensors and Actuators B 4:87 (1991).CrossRefGoogle Scholar
  24. 24.
    Y. Shimizu, H. Arai, and T. Seiyama, Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors, Sensors and Actuators 7:11 (1985).CrossRefGoogle Scholar
  25. 25.
    G. Gusmano, G. Montesperelli, P. Nunziante, E. Traversa, A. Montenero, M. Braghini, G. Mattogno, and A. Bearzotti, “Humidity-sensitive properties of titania films prepared using the sol-gel process”, J. Ceram. Soc. Jpn. 101:1095 (1993).CrossRefGoogle Scholar
  26. 26.
    E. Joanni and J.L. Baptista, ZnO-Li2O humidity sensors, Sensors and Actuators B 17:69 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Enrico Traversa
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversita’ di Roma “Tor Vergata”RomeItaly

Personalised recommendations