Advertisement

Humic Acids are Versatile Natural Polymers

  • Geoffrey Davies
  • Elham A. Ghabbour
  • Susan Jansen
  • James Varnum

Abstract

Life depends on exquisitely designed enzymes, nucleic acids, polysaccharides and structural proteins. These materials return to the earth, where they are humified to make organic polymers called humic substances. These living polymers interact with air, earth and water and have many environmental functions. Natural humification makes efficient use of life’s waste.

Keywords

Humic Substance Humic Acid COOH COOH Site Creation Site Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Ziechmann, “Humic Substances”, BI Wissenschaftsverlag, Mannheim (1993).Google Scholar
  2. 2.
    A. H. Khairy, Acta Medica Empirica, 11:898 (1981); De Natura Rerum., 3:229 (1989);Google Scholar
  3. 2a.
    A. H. Khairy, S. S. El-Gendi, and H. H. Bhagdadi, De Natura Rerum., 5:76 (1991).Google Scholar
  4. 3.
    R. Klockling, U. Eichhorn, and T. Blumohr, Fres. Z. Anal Chem., 292:408 (1978).CrossRefGoogle Scholar
  5. 4.
    S. A. Visser, Acta Biol. Med. Germ., 31:569 (1973).Google Scholar
  6. 5.
    F. Ridwan, S. Molnar, and W. Rochus, Naturwiss., 65:539 (1978).CrossRefGoogle Scholar
  7. 6.
    S. Golbs, M. Kuchnert, and V. Fuchs, Z. Ges. Hyg., 30:720 (1984).Google Scholar
  8. 7.
    S. Golbs, F. Volkhard, and M. Kuchnert, Arch. Exp. Veternaermed., 36:179 (1982).Google Scholar
  9. 8.
    F. Miawu, Z. Lisheng, C. Lauping, Z. Ping, and X. Hongji, Xaoxue Tongbao., 16:502 (1981).Google Scholar
  10. 9.
    T. Sato, Y. Ose, and H. Nagase, Mutation Res., 162:173 (1986)CrossRefGoogle Scholar
  11. 9a.
    T. Sato, Y. Ose, H. Nagase, and K. Hayase, Sci. Total Envir., 62:305 (1987).CrossRefGoogle Scholar
  12. 10.
    T. Sato, Y. Ose, H. Nagase, and K. Hayase, Mutation Res., 176:199 (1987).CrossRefGoogle Scholar
  13. 11.
    “Humic Substances in the Global Environment: Implications for Human Health,” N. Senesi, and T. M. Miano, eds., Elsevier, Amsterdam (1994). For recent work on HA structure see F. H. Frimmel, H. M. Abdel-Fattah, and G. Abbt-Braun, Modell, Meas. Control, 44:43 (1994)Google Scholar
  14. 11a.
    M. V. Cheshire, D. B. McPhail, and M. L. Berrow, Sci. Total Environ., 152:63 (1994)CrossRefGoogle Scholar
  15. 11b.
    N. Senesi, Environ. Int., 20:3 (1994)CrossRefGoogle Scholar
  16. 11c.
    G. Ricca, and F. Severini, Geoderma, 58:233 (1993)CrossRefGoogle Scholar
  17. 11d.
    A. Jankowska, T. Siemieniewska, K. Tomkov, and M. Jasienko-Halat, Carbon, 31:871 (1993).CrossRefGoogle Scholar
  18. 12.
    F. Scheffer, W. Zeichmann, and G. Pawelke, Pflanzenernahr. Dung. Bodenkd., 90:58 (1960)R. H. Pierce, Jr., and G. T. Felbeck, Jr., Proc. Int. Mtg. Humic Subst., Nieuwersluis, 1972, p. 217.CrossRefGoogle Scholar
  19. 13.
    M. Schnitzer, and S. U. Khan, “Humic Substances in the Environment,” Dekker, New York, (1972), p. 288.Google Scholar
  20. 14.
    E. A. Ghabbour, A. H. Khairy, D. P. Cheney, V Gross, G. Davies, T. R. Gilbert, and X. Zhang, J. Appl. Phycol., 6:459 (1994).CrossRefGoogle Scholar
  21. 15.
    A. H. Gillam, and J. P. Riley, Analyt. Chim. Acta, 141:287 (1982).CrossRefGoogle Scholar
  22. 16.
    M. A. Rashid, and L. H. King, Geochim. Cosmochim. Acta, 34:193 (1970).CrossRefGoogle Scholar
  23. 17.
    A. Piccolo, Environ. Soil Sci., 146:418 (1988).CrossRefGoogle Scholar
  24. 18.
    M. B. Holder, and S. M. Griffith, Can. J. Soil Sci., 63:151 (1983).CrossRefGoogle Scholar
  25. 19.
    M. Schnitzer, Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones, in: “Soil Organic Matter Studies,” International Atomic Energy Agency, Vienna, Vol II (1977), p. 117–132.Google Scholar
  26. 20.
    Y. Chen, N. Senesi, and M. Schnitzer, Geoderma, 20:87 (1978).CrossRefGoogle Scholar
  27. 21.
    W. Fuchs, Kolloid Z., 52:124 (1930): see also “Surface and Colloid Chemistry in Natural Water and Water Treatment,” R. Beckett, ed., Plenum, New York (1990) p. 3–20.Google Scholar
  28. 22.
    C. C. Dragunov, H. H. Zhelokhovtseva, and E. J. Strelkova, Pochvreddenie, 7:409 (1948).Google Scholar
  29. 23.
    W. Flaig, Sci. Proc. Roy. Dublin Soc, 4:49 (1960).Google Scholar
  30. 24.
    F. J. Stevenson, “Humus Chemistry: Genesis, Composition, Reactions,” Wiley, New York (1982), pp. 26–39, 258–263.Google Scholar
  31. 25.
    C. Steelink, Implications of elemental characteristics of humic substances, in: “Humic Substances in Soil, Sediments and Water,” G. R. Aiken, D. M. McKnight, R. L. Wershaw, and P. MacCarthy, eds.: Wiley-Interscience, New York (1985) pp. 457–476.Google Scholar
  32. 26.
    A. H. Khairy, H. H. Baghdadi, and E. A. Ghabbour, Z. Pflanzenernahr. Bodenkd., 153:33 (1990).CrossRefGoogle Scholar
  33. 27.
    G. Davies, E. A. Ghabbour, A. H. Khairy and H. Z. Ibrahim, submitted to J. Phys. Chem. Google Scholar
  34. 28.
    W. Flaig, H. Beutelspacher, and E. Rietz, Chemical composition and physical properties of humic substances, in: “Soil Components. VI. Organic Components,” J. E. Gieseking, ed., Springer-Verlag, New York (1975) pp. 1–211.CrossRefGoogle Scholar
  35. 29.
    F. J. Stevenson, and J. A. H. Butler, Chemistry of humic acids and related substances, in: “Organic Geochemistry,” G. Eglinton, and M. T. J. Murphy, eds., Springer, New York (1969), pp. 534–557.CrossRefGoogle Scholar
  36. 30.
    S. A. Jansen, J. Varnum, M. Malaty, E. A. Ghabbour and G. Davies, in preparation.Google Scholar
  37. 31.
    R. W. Woody, in: “The Peptides,” Academic, New York (1985), Vol. 2, Ch.2 and references therein.Google Scholar
  38. 32.
    J. Varnum, S. A. Jansen, and G. Davies, to be published: for jump-return sequence used to obtain the data in Figure 4b, see J. P. Hoare, J. Magn. Res., 55:283 (1983); G. M. Clore, B. J. Kimber, and A. M. Gronenborn, J. Magn. Res., 68:526 (1986).Google Scholar
  39. 33.
    P. Ruggiero, C. Crecchio, R. Mininni, and M. D. R. Pizzigallo, Sci. Total Environ., 123/124:93 (1992).CrossRefGoogle Scholar
  40. 34.
    M. Adhikari, and P. Sen, Indian Agric, 26:107 (1982).Google Scholar
  41. 35.
    S. U. Khan, Can. J. Soil Sci., 53:199 (1973).CrossRefGoogle Scholar
  42. 36.
    Y. A. Madhhun, V. H. Freed, and J. L. Young, Soil Sci. Soc. Amer. J., 50:319 (1986).CrossRefGoogle Scholar
  43. 37.
    A. Piccolo, G. Celano, and G. Pietramellara, Sci. Total Environ., 123/124:77 (1992).CrossRefGoogle Scholar
  44. 38.
    U. Muller-Wegener, Z. Planzenernach. Bodenk., 145:411 (1982).CrossRefGoogle Scholar
  45. 39.
    G. C. Li, and G. T. Felbeck, Jr., Soil Sci., 113:140 (1972).CrossRefGoogle Scholar
  46. 40.
    C. Maqueda, J. L. Prez-Rodriguez, and M. C. Hermosin, Soil Sci., 136:75 (1983).CrossRefGoogle Scholar
  47. 41.
    A. H. Khairy, H. Z. Ibrahim, E. A. Ghabbour, and G. Davies, Manuscripts in preparation; E. A. Ghabbour, Doctoral dissertation, Alexandria University (1994).Google Scholar
  48. 42.
    R. W. Pekala, J. Math. Sci. 24:3221 (1989).CrossRefGoogle Scholar
  49. 43.
    L. W. Hrubesh, Chem. & Ind, 24:824 (1990).Google Scholar
  50. 44.
    W. J. Schmitt, R. A. Greiger-Block, and T. W. Chapman, in: “Chemical Engineering at Supercritical Fluid Conditions,” M. E. Paulitis, ed., Ann Arbor Science, Ann Arbor (1983), pp.445–460.Google Scholar
  51. 45.
    A. Radwan, R. J. Willey, G. Davies, A. Fataftah, and S. J. Rouanet, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Geoffrey Davies
    • 1
  • Elham A. Ghabbour
    • 2
  • Susan Jansen
    • 3
  • James Varnum
    • 3
  1. 1.Chemistry DepartmentNortheastern UniversityBostonUSA
  2. 2.Soil Salinity LaboratoryBacos, AlexandriaEgypt
  3. 3.Chemistry DepartmentTemple UniversityPhiladelphiaUSA

Personalised recommendations