Nanocomposites of Grafted Polymers onto Layered Silicate

  • Ahmed Akelah

Abstract

Inorganic materials usually have high thermal stability, good optical properties and high modulus, but they are very brittle. On the other hand, polymeric materials have elastic properties. However, it is normally difficult to have in the same material both properties of high strength to sustain high loads and high toughness to absorb a large amount of energy during fracture that occurs by breaking of primary and secondary bonds, depending upon the structure of the material1. Inorganics are orginally introduced into polymers as fine solids to act as fillers or as reinforcing agents. The mineral fillers are used to dilute and hence to reduce the amount of the final polymers used in the shaped structures thereby lowering the economic high cost of the polymers. However, reinforced polymers with minerals show an increase in modulus, hardness, tensile strength, tear resistance, abrasion, and resistance to fatigue and cracking2.

Keywords

Maleic Anhydride Interlamellar Spacing Monomer Molecule Silicon Alkoxide Mineral Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1-.
    N.G. Gaylord, H. Ender, L. Davis & A. Takahashi, in “Modification of Polymers”, C.E. Carraher & M.Tsuda, Eds, ACS Symp Ser 121, (1980)Google Scholar
  2. 2-.
    A. Voet; J Polym Sci Macromol Rev 15: 327–373 (1980)CrossRefGoogle Scholar
  3. 3-.
    B.K.G. Theng, “Formation and Properties of Clay-Polymer Complexes”, Elsevier, Amsterdam (1979)Google Scholar
  4. 4-.
    L.E. Brus, W.L. Brown, R.P. Andres, R.S. Averback, W.A. Goddard, A. Kaldor, S.G. Louie, M. Moskovits, P.S. Peercy, S.J. Riley, R.W. Siegel, F.A. Spaepen & Y. Wang; J Mater Res 4: 704 (1989)CrossRefGoogle Scholar
  5. 5-.
    A. Akelah & A. Moet; J Appl Polym Sci Symp, 55: 153 (1994)Google Scholar
  6. 6-.
    A. Wheeler; US Pat 2847391 (1958)Google Scholar
  7. 7-.
    H.Z. Friedlander; Chem Eng News 42: 42 (1964) & J Polym Sci B-2: 475 (1964)Google Scholar
  8. 8-.
    A. Blumstein; Bull Soc Chim Fr 899 (1961); J Polym Sci Part A-3: 2653 (1965) & Appl Polym Symp 25: 81 (1974)Google Scholar
  9. 9-.
    Y. Sugahara, S. Satokawa, K. Kuroda & C. Kato; Clays Clay Miner 36: 343 (1988)CrossRefGoogle Scholar
  10. 10-.
    F. Bergaya & F. Kooli; Clay Miner 26: 33 (1991).CrossRefGoogle Scholar
  11. 11-.
    C. Kato, K. Kuroda & H. Takahara; Clays Clay Miner 29: 294 (1981)CrossRefGoogle Scholar
  12. 12-.
    D.J. Greenland; J Colloid Sci 18: 647 (1963)CrossRefGoogle Scholar
  13. 13-.
    C.W. Francis; Soil Sci 115: 40 (1973)CrossRefGoogle Scholar
  14. 14-.
    R.L. Parfilt & D.J. Greenland; Clay Miner 8: 305 (1970)CrossRefGoogle Scholar
  15. 15-.
    N. Schamp & J. Huylebroeck; J Polym Sci Symp 42:553 (1973)CrossRefGoogle Scholar
  16. 16-.
    R.A. Vaia, H. Ishii & E.P. Giannelis; Chem Mater 5: 1694 (1993)CrossRefGoogle Scholar
  17. 17-.
    E.P. Plueddemann, “Silane Coupling Agents”, Plenum Press, NY, 1st edn, (1982) & 2nd edn, (1991)CrossRefGoogle Scholar
  18. 18-.
    E. Ruiz-Hitzky & J. Fripiat; Clys Clay Miner 24: 25 (1976)CrossRefGoogle Scholar
  19. 19-.
    R.L. Kaas & J.K. Kardos; Polym Eng Sci 11: 11 (1971)CrossRefGoogle Scholar
  20. 20-.
    J.D. Miller, K. Hoh & H. Ishida; Polym Compos 5: 18 (1984)CrossRefGoogle Scholar
  21. 21-.
    S.L. Savard, P. Blanchard, J. Leonard & R.E. Prud’homme; Polym Compos 5: 242 (1984)CrossRefGoogle Scholar
  22. 22-.
    B.D. Favis & P. Blanchard; Polym Compos 5: 11 (1984)CrossRefGoogle Scholar
  23. 23-.
    M.W. Ranney & C.A. Pagano; Rubber Chem Technol 44: 1080 (1971)CrossRefGoogle Scholar
  24. 24-.
    G.M. Cameron, M.W. Ranney & K.J. Soliman; Eur Rubber J 156: (3) 37 (1974)Google Scholar
  25. 25-.
    G.W. MacDonald, Rubber Age April (1970)Google Scholar
  26. 26-.
    T. A. Grillo, Rubber Age 37 (1971)Google Scholar
  27. 27-.
    E. Papirer & V.T. Nguyen; J Polym Sci B-10, 167 (1972)CrossRefGoogle Scholar
  28. 28-.
    A. Vidal, E. Papirer & J.B. Donnet; Cour Polym J 12: 791 (1976)Google Scholar
  29. 29-.
    E. Papirer, J.C. Morauski & A. Vidal; Angew Makromol Chem 42: 91 & 597 (1975); Angew Mol Chem 19: 65 (1971)CrossRefGoogle Scholar
  30. 30-.
    N.G. Gaylord; US Pat 3956230 (1976) & 4071494 (1978)Google Scholar
  31. 31-.
    B. Tieke; Adv Polym Sci 71: 79 (1985)CrossRefGoogle Scholar
  32. 32-.
    L.C. Klein, “Sol-Gel Technology”, Noyes Publ, Park Ridge, (1988); Ann Rev Mater Sci 15: 227 (1985)Google Scholar
  33. 33-.
    L.G. Hubert-Pfalzgraf, New J Chem 11: 663 (1987)Google Scholar
  34. 34-.
    J. Livage, M. Henry & C. Sanchez, Progr Solid State Chem 18: 259 (1988)CrossRefGoogle Scholar
  35. 35-.
    C.J. Brinker & G.W. Scherer, “Sol-Gel Science”, Acad Press, San Diego (1990); J Non-cryst Solids 100: 31 (1988)Google Scholar
  36. 36-.
    H. Schmidt; “Inorganic-Organic Composites by Sol-Gel Techniques”, MRS Symp Proc 171: 3 (1990)CrossRefGoogle Scholar
  37. 37-.
    J. Livage, F. Babonneau & C. Sanchez, in “Inorganic and Organo-metallic Oligomers and Polymers”, J.F. Harrod & R.M. Laine, Eds, Kluwer Axad Publ, Dordrecht, 217 (1991)CrossRefGoogle Scholar
  38. 38-.
    G. Cao & T.E. Mallouk; J Solid State Chem 94: 59 (1991)CrossRefGoogle Scholar
  39. 39-.
    J.E. Pillion & M.E. Thompson; Chem Mater 3: 777 (1991)CrossRefGoogle Scholar
  40. 40-.
    M.G. Kanatzidis, C.-G. Wu, H.O. Marcy, D.C. DeGroot & CR. Kannewurf; Chem Mater 2: 222 (1990) & 3: 992 (1991)CrossRefGoogle Scholar
  41. 41-.
    M.G. Kanatzidis, C.-G. Wu, D.C. DeGroot, J.L. Schindler, M. Benz, E. LeGoff & C.R. Kannewurf; “NATO ASI, Chemical Physics of Intercalation II”; J.Fisher, Ed, Plenum Press, NY, (1993)Google Scholar
  42. 42-.
    V. Mehrotra & E.P. Giannelis; in “Polymer Based Molecular Composites”, D.W. Shaefer, J.E. Mark, Eds, MRS Pr 171: 1990Google Scholar
  43. 43-.
    V. Mehrotra & E.P. Giannelis; Solid State Comm 77: 155 (1991) & 51: 115 (1992)CrossRefGoogle Scholar
  44. 44-.
    C. Kato, K. Kuroda & H. Takahara; Clays Clay Miner 29: 294 (1981)CrossRefGoogle Scholar
  45. 45-.
    M. Ogawa, K. Kuroda & C. Kato; Clay Sci 7: 243 (1989)Google Scholar
  46. 46-.
    Y. Fukushima, A. Okada, M. Kawasumi, T. Kurauchi & O. Kamigaito; Clay Miner 23: 27 (1988)CrossRefGoogle Scholar
  47. 47-.
    E.P. Giannelis, V. Mehrotra, O.K. Tse, R.A. Vaia & T.C. Sung, in “Synthesis and Processing of Ceramics: Scientific Issues”, E.W. Rhine, T.M. Shaw, R.J. Gottshall & Y. Chen, Eds, MRS Proc 249: 547 (1992)Google Scholar
  48. 48-.
    P. Aranda & E. Ruiz-Hitzky; Chem Mater 4: 1395 (1992)CrossRefGoogle Scholar
  49. 49-.
    P.B. Messersmith & S.I. Stupp; J Mater Res 7: 2599 (1992)CrossRefGoogle Scholar
  50. 50-.
    L.F. Nazar, et al, in “Solid State Ionic II”, MRS Proc; 210: (1991)Google Scholar
  51. 51-.
    A. Moet & A. Akelah; Mater Lett 18: 97 (1993)CrossRefGoogle Scholar
  52. 52-.
    A. Moet, A. Akelah, A. Hiltner & E. Baer; Paper No. V-4.2, MRS Symp, San Francisco, Calif, 4–8 April (1994)Google Scholar
  53. 53-.
    A. Moet, A. Akelah, A. Hiltner & E. Baer, in “Molecularly Designed Ultrafine/Nanostructured Materials”, K.E. Gonsalves, G.M. Chow, T.D. Xiao and R.C. Cammarata, Eds, MRS Symp Proc, 351: 91 (1994)Google Scholar
  54. 54-.
    C. Kato, K. Kuroda & M. Misawa; Clays Clay Miner 27: 129 (1979)CrossRefGoogle Scholar
  55. 55-.
    Y. Fukushima & S. Inagaki; J Incl Phenom 5: 473 (1987)CrossRefGoogle Scholar
  56. 56-.
    A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi & O. Kamigaito; MRS Symp Proc 171: 45, (1990)CrossRefGoogle Scholar
  57. 57-.
    P. Kelly, A. Akelah, S. Qutubuddin & A. Moet; J Mater Sei, 29: 2274 (1994)CrossRefGoogle Scholar
  58. 58-.
    A. Akelah, P. Kelly, S. Qutubuddin & A. Moet; Clay Miner,29: 169 (1994)CrossRefGoogle Scholar
  59. 59-.
    A. Moet, A. Akelah, N. Salahuddin, A. Hiltner & E. Baer; Paper No V-6.1, MRS Symp, San Francisco, CA, 4–8 April (1994)Google Scholar
  60. 60-.
    A. Akelah, N. Salahuddin, A. Hiltner, E. Baer, & A. Moet; Nanostr Mater, 4: (8), (1994)CrossRefGoogle Scholar
  61. 61-.
    A. Moet, A. Akelah, N. Salahuddin, A. Hiltner & E. Baer, in “Molecularly Designed Ultrafine/Nanostructured Materials K.E. Gonsalves, G.M. Chow, T.D. Xiao & R.C. Cammarata, Eds, MRS Symp Proc 351: 163 (1994)Google Scholar
  62. 62-.
    A. Akelah, N. Salahuddin, A. Hiltner, E. Baer & A. Moet; Mater Lett, 22: 97 (1995)CrossRefGoogle Scholar
  63. 63-.
    A. Akelah, A. Rehab, A. Selim, & T. Agag; J Mol Catal 94: 311 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ahmed Akelah
    • 1
  1. 1.Chemistry DepartmentUAE UniversityAl-AinUnited Arab Emirates

Personalised recommendations