Advertisement

Biotechnological Application of Enzymes from Extremophilic Organisms: Synthesis of Modified Monomers

  • Gianfranco Peluso
  • Antonio Trincone
  • Francesco La Cara
  • Francesco Rosso
  • Mosè Rossi

Abstract

In the last few years, the use of enzymes for industrial purpose has revealed a rapid growth owing to the advantages they confer to conventional chemical methods. For example biocatalysts are highly specific and efficient and are able to produce chiral compounds.

Keywords

Thermostable Enzyme Clostridium Thermocellum Sulfolobus Solfataricus Extreme Thermophile Glycosyl Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A. Cowan, Biochemistry and molecular biology of the extremely thermophilic Archaebacteria, in: “Molecular Biology and Biotechnology of Extremophiles,” RA. Herbert, and R.J. Sharp, eds., New York: Chapman and Hall (1992).Google Scholar
  2. 2.
    D.A. Cowan, Biotechnology of the Archaea, TIBTECH 10:315–323 (1992)CrossRefGoogle Scholar
  3. 3.
    C.R. Woese, Bacterial Evolution, Microbiol Rev. 51:221–271 (1987).Google Scholar
  4. 4.
    D.G. Searcy, The archaebacterial histone HTa, in: “Bacterial chromatin,” C.O. Gualerzi, and C.L. Pow, eds., Heidelberg: Springer-Verlag (1986).Google Scholar
  5. 5.
    J.K. Kristjansson, Thermophilic organisms as sources of thermostable enzymes, TIBTECH 7: 349–353 (1989).CrossRefGoogle Scholar
  6. 6.
    K. Peek, L.D. Ruttersmith, R.M. Daniel, H.W. Morgan, and P.L. Bergquist, Thermophilic enzymes as industrial catalysts? Biotech Forum Europe 9: 466–470 (1992).Google Scholar
  7. 7.
    R.A. Herbert, A perspective on the biotechnological potential of extremophiles, TIBTECH 10: 395–402 (1992).CrossRefGoogle Scholar
  8. 8.
    M. Moracci, A. La Volpe, J.F. Pulitzer, M. Rossi, and M. Ciaramella, Expression of the thermostable β-Galactosidase gene from the Archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression, J. Bacteriol 174: 873–882 (1992).Google Scholar
  9. 9.
    F.M. Pisani, C. De Martino, and M. Rossi, A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family β-DNA polymerases, Nucleic Acids Res. 20: 2711–2716 (1992).CrossRefGoogle Scholar
  10. 10.
    S. Ammendola, C.A. Raia, C. Caruso, L. Camardella, S. Dauria, M. De Rosa, and M. Rossi, Thermostable NAD+-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases, Biochemistry 31:12514–12523 (1992).CrossRefGoogle Scholar
  11. 11.
    R. Cannio, D. de Pascale, M. Rossi, and S. Bartolucci, Gene expression of a thermostable β-galactosidase in mammalian cells and its application in assays of eukaryotic promoter activity, Biotechnol. Appl. Biochem. 19: 233–244 (1994).Google Scholar
  12. 12.
    A. Trincone, B. Nicolaus, L. Lama, and A. Gambacorta, Potential application of Sulfolobus solfataricus as catalyst in organic synthesis, Indian J. Chem. (Section B) 32: 25–29 (1993).Google Scholar
  13. 13.
    E. Keinan, S. C. Sinha, and A. Sinha Bagchi, Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium Brockü, J. Org. Chem. 57: 3631–3636 (1992).CrossRefGoogle Scholar
  14. 14.
    E. Santaniello, P. Ferraboschi, P. Grisenti, and A. Manzocchi, The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks, Chem. Rev. 92: 1071–1140 (1992).CrossRefGoogle Scholar
  15. 15.
    C-H. Wong, and G. M. Whitesides, Enzymes in Synthetic organic chemistry Tetrahedron Organic series Vol. 12, J.E. Baldwin, F.R.S. Magnus and P.D. Magnus, eds., Great Britain Pergamon Press (1994).Google Scholar
  16. 16.
    H. Waldmann, and D. Sebastian, Enzymatic protecting group techniques, Chem. Rev. 94: 911–937 (1994).CrossRefGoogle Scholar
  17. 17.
    E. J. Toone, E. S. Simon, M. D. Bednarski, and G. M. Whitesides, Enzyme-catalysed synthesis of carbohydrates, Tetrahedron 45: 5365–5422 (1989).CrossRefGoogle Scholar
  18. 18.
    A. Trincone, B. Nicolaus, L. Lama, P. Morzillo, M. De Rosa, and A. Gambacorta, Enzyme-catalysed synthesis of alkyl-β-D-glycosides with crude omogenate of Sulfolobus solfataricus, Biotechnol Lett 13: 235–240 (1991).CrossRefGoogle Scholar
  19. 19.
    A. Trincone, R. Improta, R. Nucci, M. Rossi, and A. Gambacorta, Enzymatic synthesis of carbohydrate derivatives using β-glycosidase of Sulfolobus solfataricus, Biocatalysis 10: 195–210 (1994).CrossRefGoogle Scholar
  20. 20.
    A. Trincone, B. Nicolaus, L. Lama, and A. Gambacorta, Stereochemical studies of enzymatic transglycosilation using Sulfolobus solfataricus, J. Chem. Soc. Perkin Trans I 2841–2844 (1991).CrossRefGoogle Scholar
  21. 21.
    A. Trincone, E. Pagnotta, and G. Sodano, Chemoenzymatic synthesis and stereochemisty of aleppotrioloside, a naturally occurring glycoside, Tetrahedron Letters 35: 1415–1416 (1994).CrossRefGoogle Scholar
  22. 22.
    A. Trincone, E. Pagnotta, Efficient chemoselective synthesis of 3–4’-dihydroxypropiophenone 3-ο-β-D-glucoside by thermophilic β-glycosidase from Sulfolobus solfataricus, Biotechnol Lett 17: 45–48 (1995).CrossRefGoogle Scholar
  23. 23.
    K. Mori, Z-H. Qian, and S. Watanabe, Synthesis of 3–4’-dihydroxy-propiophenone 3-p-D-glucoside a constituent of Betula platyphylla, by enzymatic transglycosilation, Liebigs Ann. Chem. 485–487 (1992).Google Scholar
  24. 24.
    A. M. Blinkovski, and J. S. Dordick, Enzymatic derivatization of saccharides and their chemical polymerization, Tetrahedron: Asymmetry 6: 1221–1228 (1993).CrossRefGoogle Scholar
  25. 25.
    J. S. Dordick, 1992, Enzymatic and chemoenzymatic approaches to polymer synthesis, TIBTECH 10: 287–293 (1992).CrossRefGoogle Scholar
  26. 26.
    R. Nucci, M. Moracci, C. Vaccaro, N. Vespa, and M. Rossi, Exoglucosidase activity and substrate specificity of the β-glycosidase isolated from the extreme thermophile Sulfolobus solfataricus, Biotechnol. Appl. Biochem. 17: 239–250 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gianfranco Peluso
    • 1
  • Antonio Trincone
    • 2
  • Francesco La Cara
    • 1
  • Francesco Rosso
    • 1
  • Mosè Rossi
    • 1
  1. 1.Institute of Protein Biochemistry and EnzymologyC.N.R.Arco Felice, NaplesItaly
  2. 2.Institute for the Molecules of Biological InterestC.N.R.Arco Felice, NaplesItaly

Personalised recommendations