A Thermally Stable Organic Light-Emitting Diode

  • P. Di Marco
  • J. Kalinowski
  • N. Camaioni
  • V. Fattori
  • G. Giro

Abstract

The design of organic electroluminescence (EL) devices meets several barriers, thermal stability and injection ability of charge carriers from the electrodes being important examples. In spite of considerable efforts to surmount them,1 they still create serious problems and require more experimental data and profounded knowledge on the device operation.

Keywords

Hole Transport Layer Electron Rest Mass Onsager Model Electroluminescent Diode Transparent Anode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Electroluminescence Materials. Devices, and Large Screen Displays”, Esther M. Conwcll. Milan Stolka and M. Robert Miller, eds., Proc. SPIE 1910, USA (1993).Google Scholar
  2. 2.
    C. W. Tang and S. A. Van Slyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51: 913 (1987).CrossRefGoogle Scholar
  3. 3.
    C. W. Tang, S. A. VanSlyke and C. H. Chen, Electroluminescence of doped organic films, J. Appl Phys. 65: 3610 (1989).CrossRefGoogle Scholar
  4. 4.
    T. Tsutsui, E. Aminaka, Y. Fujita. Y. Hamada and S. Saito. Molecular design of organic dyes for thin-film electroluminescent diodes, Synth. Metals 57: 4157 (1993).CrossRefGoogle Scholar
  5. 5.
    J. Godlewski and J. Kalinowski, Injection-limited currents in insulators, Japan. J. Appl. Phys. 28: 24 (1989).CrossRefGoogle Scholar
  6. 6.
    J. Kalinowski, J. Godlewski and Z. Dreger, High-field recombination electroluminescence in vacuum-deposited anthracene and doped anthracene films, Appl. Phys. A37: 179 (1985).Google Scholar
  7. 7.
    J. Kalinowski, Limiting factors in operation and fabrication of organic electroluminescence devices, in: “Advanced New Materials and Emerging New Technologies”, P.N. Prasad, E. Mark and J.F. Fung, eds., Plenum Press, New York (1995).Google Scholar
  8. 8.
    J. Kalinowski, W. Stampor, P. Di Marco and V. Fattori, Electroabsorption study of excited states in hydrogen-bonding solids: epindolidione and linear trans-quinacridone, Chem. Phys. 182: 341 (1994).CrossRefGoogle Scholar
  9. 9.
    G. Yepifanov. “Physical Principles of Microelectronics”, Mir Publ., Moscow (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. Di Marco
    • 1
  • J. Kalinowski
    • 1
    • 2
  • N. Camaioni
    • 1
  • V. Fattori
    • 1
  • G. Giro
    • 1
  1. 1.Instituto di Fotochimica e Radiazioni di Alta Energia del C.N.R.BolognaItaly
  2. 2.Department of Molecular PhysicsTechnical University of GdańskGdańskPoland

Personalised recommendations