Optics as a Means for Studying the Orientational Mobility of Chromophores and for Creating Macroscopic Order in Amorphous Films

  • Michel Dumont


It is no more necessary to demonstrate the interest of creating a macroscopic order in an ensemble of anisotropic optically active molecules dispersed in a polymer (or a sol-gel) film. If anisotropic chromophores are aligned the material is birefringent and eventually dichroic. This property can be used for patterning waveguides or gratings, or for information and image storage (by bits or holographically). If polar molecules are oriented in the same direction, the film becomes non centrosymmetric and first order optical nonlinearities appear (χ(2)): this is necessary for second harmonic generation (SHG) and for electro-optic modulation. For most of those applications the macroscopic order must be created once and one wishes a permanent stability of this order: a lot of job has been done everywhere to increase long term stability13 (high Tg materials, integration of chromophores in the polymer chain, cross-linking...). Nevertheless some other applications, such as image processing by holographic methods, need a fast creation and a fast relaxation of the macroscopic order.


Hole Burning Electrooptic Effect Orientational Relaxation Thermal Poling Photoinduced Birefringence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.a
    Z. Sekkat and M. Dumont, Photoassisted poling of azo-dye doped polymeric films at room temperature, Appl. Phys. B, 54, 486 (1992).CrossRefGoogle Scholar
  2. 1.b
    Z. Sekkat and M. Dumont, Poling of polymer films by photoisomerisation of azo-dye chromophores, Mol. Chryst. liq. Chryst. Sci. Technol. secB: Nonlinear Optics, 2, 359 (1992).Google Scholar
  3. 2.
    F. Charra, F. Devaux, J.M. Nunzi and P. Raimond, Picosecond light-induced noncentrosymmetry in a dye solution, Phys. Rev. Lett. 68, 2440 (1992).CrossRefGoogle Scholar
  4. 3.a
    J.D. Le Grange, M.G. Kuzyk and K.D. Singer, Effects of order on nonlinear optical processes in organic molecular materials, Mol. Cryst. Liq. Cryst. 150b, 567 (1987)Google Scholar
  5. 3.b
    K.D. Singer, M.G. Kuzyk, and J.E. Sohn, Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties, J. Opt. Soc. Am. B 4, 968 (1987).CrossRefGoogle Scholar
  6. 4.
    M. Dumont and Y. Levy, Electro-optic properties of organic thin films by attenuated total reflection, in: “Nonlinear Optics of Organics and Semiconductors”, T. Kobayashi, ed., Springer-Verlag, Berlin (1989) p.256CrossRefGoogle Scholar
  7. 5.
    M. Dumont, Y. Levy and D. Modchiere, Electrooptic organic waveguides: optical characterization, in: “Organic Molecules for Nonlinear Optics and Photonics”, J. Messier, F. Kajzar and P. Prasad, ed., Nato ASI Series vol. E 194, Kluwer Academic Publishers, Dordrecht (1991), p461CrossRefGoogle Scholar
  8. 6.
    M. Dumont, D. Morichère, Z. Sekkat and Y. Levy: Accurate measurement of thin polymeric films index variations. Application to elasto-optic effect and to photochromism, in “Photopolymer Device Physics, Chemistry, and Applications II”, R. Lessard ed., SPIE proceedings Vol 1559 (1991), p 127.CrossRefGoogle Scholar
  9. 7.
    D. Morichère, V. Dentan, F. Kajzar, P. Robin, Y. Levy and M. Dumont, Kerr effect and electrostriction in thin polymeric films. Application to polysilane films, Optics Comm., 74, 69, (1989).CrossRefGoogle Scholar
  10. 8.
    H. Benoit, Contribution à l’étude de l’effet Kerr présenté par les solutions diluées de macromolécules rigides, Ann. Phys. (Paris) 6, 561 (1951).Google Scholar
  11. 9.
    J.W. Wu, Birefringence and electro-optic effects in polymer films: steady-state and transient properties, J. Opt. Soc. Am. B8, 142 (1991).CrossRefGoogle Scholar
  12. 10.
    S. Bauer-Gogonea, S. Bauer, W. Wirges and R. Gerhard-Multhaupt, Pyroelectrical investigation of the dipole orientation in nonlinear optical polymers during and after photoinduced poling, J. Appl. Phys. 76, 2627 (1994).CrossRefGoogle Scholar
  13. 11.
    W.E. Moerner and S.M. Silence, Polymeric photorefractive materials, Chem. Rev. 94, 127 (1994).CrossRefGoogle Scholar
  14. 12.a
    C.C. Teng and H.T. Man, Simple reflection technique for measuring the electro-optic coefficient of poled polymers, Appl. Phys. Lett. 56, 1734 (1990).CrossRefGoogle Scholar
  15. 12.b
    Y. Levy, M. Dumont, E. Chastaing, P. Robin, P.A. Chollet, G. Gadret and F. Kajzar, Reflection method for electro-optical coefficient determination in stratified film structures, Mol. Chryst. liq. Chryst. Sci. Technol. sec.B: Nonlinear optics, 4, 1 (1993)Google Scholar
  16. 13.
    D.M. Burland, R.D. Miller and C. A. Walsh, Second-order nonlinearity in poled-polymer systems, Chem. Rev. 94, 31 (1994).CrossRefGoogle Scholar
  17. 14.
    R.H. Page, M.C. Julrich, B. Reck, A. Sen, R.J. Twieg, J.D. Swalen, G.C. Bjoklund and C.G. Willson, Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films, J. Opt. Soc. Am. B 7, 1239 (1990).CrossRefGoogle Scholar
  18. 15.
    Z. Sekkat and W. Knoll, Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films, Ber. Bunsenges. Phys. Chem 98, 1231 (1994).CrossRefGoogle Scholar
  19. 16.
    M. Dumont and Z. Sekkat, Dynamical study of photoinduced anisotropy and orientational relaxation of azo-dyes in polymeric films. Poling at room temperature, in: “Nonconducting Photopolymers and Applications”, R. Lessard ed., SPIE proceedings, Vol. 1774 (1992) p 188.CrossRefGoogle Scholar
  20. 17.
    Z. Sekkat and M. Dumont, Photoinduced orientation of azo dyes in polymeric films. Characterization of molecules angular mobility, Synthetic metal, 54, 373 (1993)CrossRefGoogle Scholar
  21. 18.
    M. Dumont, S. Hosotte, G. Froc and Z. Sekkat, Orientational manipulation of chromophores through photoisomerization, in: “Photopolymers and Applications In Holography, Optical Sensors and Interconnects”, R. Lessard ed., SPIE proceedings Vol. 2042, (1993) p 2.CrossRefGoogle Scholar
  22. 19.
    H. Rau, Photoisomerization of azobezenes, in “Photochemistry and Photophysics, Vol. II”, J.F. Rabek, ed., CRC press, Boca Raton, Florida (1990) p. 119.Google Scholar
  23. 19a.
    B.S. Neporent, O.V. Stolbova: Opt. Spektrosk, 10, 287 (1961) [Opt. Spectrosc, 10, 146 (1961)]; Opt. Spektrosk, 14, 624 (1963) [Opt. Spectrosc, 14, 331 (1963)].Google Scholar
  24. 19b.
    A.M. Makushenko, B.S. Neporent, O.V. Stolbova, Opt. Spektrosk, 31, 557 (1971) [Opt. Spectrosc. 31, 295 (1971)];Google Scholar
  25. 19c.
    A.M. Makushenko, B.S. Neporent, O.V. Stolbova, Opt. Spektrosk, 31, 741 (1971) [Opt. Spectrosc. 31, 397 (1971)];Google Scholar
  26. 20.
    T. Todorov, L. Nikolova, N. Tomova, Polarization holography. 1:A new high-efficiency organic material with reversible photoinduced birefringence, Applied Optics, 23, 4309 (1984).CrossRefGoogle Scholar
  27. 21.
    M. Dumont, G. Froc and S. Hosotte, Alignment and orientation of chromophores by optical pumping, Nonlinear Optics, 9, 327 (1995)Google Scholar
  28. 22.
    F. Charra, F. Kajzar, J.M. Nunzi, P. Raimond and E. Idiart, Light-induced second-harmonic generation in azo-dye polymers, Optics Lett. 18, 941 (1993).CrossRefGoogle Scholar
  29. 23.a
    C. Fiorini, F. Charra, J.M. Nunzi and P. Raimond, Photoinduced non centrosymmetry in azo-dye polymers, Nonlinear Optics 9 (1995) in press.Google Scholar
  30. 23.b
    J.M. Nunzi, C. Fiorini, F. Charra, F. Kajzar and P. Raimond, All-optical poling of polymers for phase-matched frequency doubling, in, All-optical poling of polymers for phase-matched frequency doubling, in “Polymer Thin Films for Photonics”, ACS symposium series (1994).Google Scholar
  31. 24.
    R.H. Stolen and H.W.K. Tom, Opt. Lett. 12, 585 (1987).CrossRefGoogle Scholar
  32. 25.
    M. Dumont, Z. Sekkat, R. Loucif-Saibi, K. Nakatani and J.A. Delaire, Photoisomerization, photoinduced orientation and orientational relaxation of azo dyes in polymeric films, Mol. Chryst. liq. Chryst. Sci. Technol. secB: Nonlinear Optics, 5, 395 (1993).Google Scholar
  33. 26.
    S. Yilmaz, S. Bauer and R. Gerhard-Multhaupt, Photothermal poling of nonlinear optical polymer films, Appl. Phys. Lett. 64, 2770 (1994).CrossRefGoogle Scholar
  34. 27.
    P.M. Blanchard and G.R. Mitchell, A comparison of photoinduced poling and thermal poling of azo-dye-doped polymer films for second order nonlinear optical applications, Appl. Phys. Lett. 63, 2038 (1993)CrossRefGoogle Scholar
  35. 28.
    J.M. Nunzi, F. Charra, C. Fiorini and J. Zyss, Transient optically induced non-centrosymmetry in a solution of octupolar molecules, Chem. Phys. Lett. 219, 349 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michel Dumont
    • 1
  1. 1.Institut d’Optique Théorique et AppliquéeORSAY CedexFrance

Personalised recommendations