Advertisement

Novel Electro-Optic Polyimide and Polyamide Side Chain and Main Chain Polymers

  • P. Günter
  • P. Prêtre
  • P. Kaatz
  • Ch. Weder
  • P. Neuenschwander
  • U. W. Suter

Abstract

There has been considerable interest in organic nonlinear optical (NLO) materials, because of their potential application in integrated electro-optical devices. A promising approach to the development of new second-order NLO-materials is that of poled polymers. The advantages of poled polymers are large susceptibilities, fast response times, easy processability, and high physical and mechanical stability, but their NLO properties are usually not stable, due to the thermal relaxation of the chromophore orientation.1 Different design strategies have been worked out to synthesize polymers with desirable NLO-properties. Typically the NLO chromophores have been incorporated by doping2 (guest-host systems) or attaching them covalently3 (side-chain systems) into amorphous or liquid crystalline polymers. To enhance the orientational stability of the chromophores, cross-linked polymers4 or polymers which incorporate the chromophores with their dipole moments head-to-tail in the main chain5 have been synthesized.

Keywords

Second Harmonic Generation Liquid Crystalline Polymer Swiss Federal Institute Main Chain Polymer Second Harmonic Generation Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    In Nonlinear Optical Effects in Organic Polymers’, J. Messier, F. Kajzar, P. N. Prasad and D. R. Ulrich Ed; Kluwer Academic Publishers: Dordrecht, 1989.Google Scholar
  2. (2).
    Meredith, G. R. J.; Dusen, J. G. V.; Williams, D., Macromolecules 1982, 75, 1385.CrossRefGoogle Scholar
  3. (3).
    Singer, K. D.; Sohn, J. E.; Lalama, S. J., Appl. Phys. Lett. 1986, 49, 248.CrossRefGoogle Scholar
  4. (4).
    Eich, M.; Reck, B.; Yoon, D. Y.; Willson, C. G.; Bjorklund, C. G., J. Appl Phys. 1989, 66, 3241.CrossRefGoogle Scholar
  5. (5).
    Green, G. D.; Weinschenk, I., J.I.; Mulvaney, J. E.; Hall Jr., H. K., Macromolecules 1987, 22, 722.CrossRefGoogle Scholar
  6. (6).
    Prêtre, P.; Kaatz, P.; Bohren, A.; Günter, P.; Zysset, B.; Ahlheim, M.; Stähelin, M.; Lehr, F., Macromolecules 1994, 27, 5476.CrossRefGoogle Scholar
  7. (7).
    Oudar, J. L., J. Chem. Phys 1977, 67, 441.Google Scholar
  8. (8).
    Ahlheim, M.; Lehr, F., Makromol. Chem. 1994, 195, 361.CrossRefGoogle Scholar
  9. (9).
    Weder, C.; Neuenschwander, P.; Suter, U. W.; Prêtre, P.; Kaatz, P.; Günter, P., Macromolecules 1994, 27, 2181.CrossRefGoogle Scholar
  10. (10).
    Manificier, J. C.; Gasiot, J.; Fillard, J. P., J. Phys. E: Sci. Instrum. 1976, 9, 1002.CrossRefGoogle Scholar
  11. (11).
    Jerphagnon, J.; Kurtz, S. K., J. Appl. Phys. 1970, 41, 1667.CrossRefGoogle Scholar
  12. (12).
    Bosshard, C.; Sutter, K.; Schiesser, R.; Günter, P., J. Opt. Soc. Am. 1993, B10, 867.CrossRefGoogle Scholar
  13. (13).
    Boyd, G. D.; Kleinman, D.A., J. Appl Phys. 1968, 39, 3597.CrossRefGoogle Scholar
  14. (14).
    Williams, G.; Watts, D. C., Trans. Far. Soc. 1970, 66, 80.CrossRefGoogle Scholar
  15. (15).
    Narayanaswamy, O. S., J. Am. Cer. Soc. 1971, 54, 411.CrossRefGoogle Scholar
  16. (16).
    Moynihan, C. T.; Crichton, S. N.; Opalka, S. M., J. Non-Cryst. Solids 1991, 131–133, 420.Google Scholar
  17. (17).
    Hodge, I. M., J. Non-Cryst. Solids 1991, 131–133, 435.CrossRefGoogle Scholar
  18. (18).
    DiMarzio, E. A.; Gibbs, J. H., J. Chem. Phys. 1958, 28, 373.CrossRefGoogle Scholar
  19. (19).
    Adam, G.; Gibbs, J. H., J. Chem. Phys. 1965, 43, 139.CrossRefGoogle Scholar
  20. (20).
    Hodge, I. M., Macromolecules 1986, 79, 936.CrossRefGoogle Scholar
  21. (21).
    Kauzmann, W., Chem. Revs. 1948, 43, 219.CrossRefGoogle Scholar
  22. (22).
    Williams, M. L.; Landel, R. F.; Ferry, J., J. Am. Chem. Soc. 1955, 3701.Google Scholar
  23. (23).
    Stähelin, M.; Burland, D. M.; Ebert, M.; Miller, R. D.; Smith, B. A.; Twieg, R. J.; Volksen, W.; Walsh, C. A., Appl. Phys. Lett. 1992, 67, 1626.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. Günter
    • 1
  • P. Prêtre
    • 1
  • P. Kaatz
    • 1
  • Ch. Weder
    • 2
  • P. Neuenschwander
    • 2
  • U. W. Suter
    • 2
  1. 1.Nonlinear Optics LaboratorySwiss Federal Institute of TechnologyZürichSwitzerland
  2. 2.Polymer InstituteSwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations