Polymers and Other Advanced Materials pp 485-491 | Cite as
Novel Electro-Optic Polyimide and Polyamide Side Chain and Main Chain Polymers
Abstract
There has been considerable interest in organic nonlinear optical (NLO) materials, because of their potential application in integrated electro-optical devices. A promising approach to the development of new second-order NLO-materials is that of poled polymers. The advantages of poled polymers are large susceptibilities, fast response times, easy processability, and high physical and mechanical stability, but their NLO properties are usually not stable, due to the thermal relaxation of the chromophore orientation.1 Different design strategies have been worked out to synthesize polymers with desirable NLO-properties. Typically the NLO chromophores have been incorporated by doping2 (guest-host systems) or attaching them covalently3 (side-chain systems) into amorphous or liquid crystalline polymers. To enhance the orientational stability of the chromophores, cross-linked polymers4 or polymers which incorporate the chromophores with their dipole moments head-to-tail in the main chain5 have been synthesized.
Keywords
Second Harmonic Generation Liquid Crystalline Polymer Swiss Federal Institute Main Chain Polymer Second Harmonic Generation SignalPreview
Unable to display preview. Download preview PDF.
References
- (1).In Nonlinear Optical Effects in Organic Polymers’, J. Messier, F. Kajzar, P. N. Prasad and D. R. Ulrich Ed; Kluwer Academic Publishers: Dordrecht, 1989.Google Scholar
- (2).Meredith, G. R. J.; Dusen, J. G. V.; Williams, D., Macromolecules 1982, 75, 1385.CrossRefGoogle Scholar
- (3).Singer, K. D.; Sohn, J. E.; Lalama, S. J., Appl. Phys. Lett. 1986, 49, 248.CrossRefGoogle Scholar
- (4).Eich, M.; Reck, B.; Yoon, D. Y.; Willson, C. G.; Bjorklund, C. G., J. Appl Phys. 1989, 66, 3241.CrossRefGoogle Scholar
- (5).Green, G. D.; Weinschenk, I., J.I.; Mulvaney, J. E.; Hall Jr., H. K., Macromolecules 1987, 22, 722.CrossRefGoogle Scholar
- (6).Prêtre, P.; Kaatz, P.; Bohren, A.; Günter, P.; Zysset, B.; Ahlheim, M.; Stähelin, M.; Lehr, F., Macromolecules 1994, 27, 5476.CrossRefGoogle Scholar
- (7).Oudar, J. L., J. Chem. Phys 1977, 67, 441.Google Scholar
- (8).Ahlheim, M.; Lehr, F., Makromol. Chem. 1994, 195, 361.CrossRefGoogle Scholar
- (9).Weder, C.; Neuenschwander, P.; Suter, U. W.; Prêtre, P.; Kaatz, P.; Günter, P., Macromolecules 1994, 27, 2181.CrossRefGoogle Scholar
- (10).Manificier, J. C.; Gasiot, J.; Fillard, J. P., J. Phys. E: Sci. Instrum. 1976, 9, 1002.CrossRefGoogle Scholar
- (11).Jerphagnon, J.; Kurtz, S. K., J. Appl. Phys. 1970, 41, 1667.CrossRefGoogle Scholar
- (12).Bosshard, C.; Sutter, K.; Schiesser, R.; Günter, P., J. Opt. Soc. Am. 1993, B10, 867.CrossRefGoogle Scholar
- (13).Boyd, G. D.; Kleinman, D.A., J. Appl Phys. 1968, 39, 3597.CrossRefGoogle Scholar
- (14).Williams, G.; Watts, D. C., Trans. Far. Soc. 1970, 66, 80.CrossRefGoogle Scholar
- (15).Narayanaswamy, O. S., J. Am. Cer. Soc. 1971, 54, 411.CrossRefGoogle Scholar
- (16).Moynihan, C. T.; Crichton, S. N.; Opalka, S. M., J. Non-Cryst. Solids 1991, 131–133, 420.Google Scholar
- (17).Hodge, I. M., J. Non-Cryst. Solids 1991, 131–133, 435.CrossRefGoogle Scholar
- (18).DiMarzio, E. A.; Gibbs, J. H., J. Chem. Phys. 1958, 28, 373.CrossRefGoogle Scholar
- (19).Adam, G.; Gibbs, J. H., J. Chem. Phys. 1965, 43, 139.CrossRefGoogle Scholar
- (20).Hodge, I. M., Macromolecules 1986, 79, 936.CrossRefGoogle Scholar
- (21).Kauzmann, W., Chem. Revs. 1948, 43, 219.CrossRefGoogle Scholar
- (22).Williams, M. L.; Landel, R. F.; Ferry, J., J. Am. Chem. Soc. 1955, 3701.Google Scholar
- (23).Stähelin, M.; Burland, D. M.; Ebert, M.; Miller, R. D.; Smith, B. A.; Twieg, R. J.; Volksen, W.; Walsh, C. A., Appl. Phys. Lett. 1992, 67, 1626.CrossRefGoogle Scholar