Nonlinear Electro-Optical and Holographic Storage Effect in Fullerene-Doped Nematic Liquid Crystal Film

  • I. C. Khoo


There have been intense research interests in materials capable of recording holographic planar or volume gratings. These include inorganic [1] and polymeric [2] photorefractive crystals, liquid crystals [3–5], bacteriorhodopsin [6], semiconductors [7] and glasses [8]. There are various advantages and limitations associated with these storage materials. In photorefractive materials, for example, fixing the optically written holograms requires the use of high fields and/or time consuming large temperature cyclings. The liquid crystalline systems [3–5] that have been investigated in the context of persistent grating also involve large laser induced temperature and phase changes. More recent work [6–9] on other materials have shown promises in overcoming some of these limitations. We have previously reported dc field assisted transient grating effects in untreated and dye-doped nematic liquid crystal film [10]. In this paper, we describe the observation of permanent grating formation in Fullerene C60-doped nematic liquid crystal film. In very lightly doped and practically totally transparent thin nematic films, permanent gratings can be generated with unfocused milliwatt power laser with the aid of dc voltages around 1 volt or so. Diffraction efficiency of over 10%, and grating constant ≲ 10 μm can be realized in these materials. These holographic gratings can be electronically turned off and on at millisecond speed.


Liquid Crystal Diffraction Efficiency Photorefractive Crystal Photorefractive Material Writing Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kewitsch, M. Segev, A. Yariv and R. Neurgaonkar, Optics Lett. 18, 1262 (1993) and references therein. See also, G. Gunter and J. P. Huignard, ed., “Photorefractive Materials and Their Applications,” Vol. I and II (Springer Verlag, Berlin, 1989).CrossRefGoogle Scholar
  2. 2.
    S. Ducharme, J. C. Scott, R. J. Tweig and W. E. Moerner, Phys. Rev. Letts. 66, 1846 (1991);CrossRefGoogle Scholar
  3. 2a.
    S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Tweig, F. Hache, G. C. Bjorklund and W. E. Moerner, Opt. Lett. 17, 1107 (1992).CrossRefGoogle Scholar
  4. 2b.
    Y. Zhang, Y. Cui and P. N. Prasad, Phys. Rev. B46, 9900 (1992).CrossRefGoogle Scholar
  5. 3.
    W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, Nature 351, 49 (1991);CrossRefGoogle Scholar
  6. 3a.
    Kunihiro Ichimura, Yasuzou Suzuki, Takahiro Seki, Yuji Kawanishi, Takashi Tamaki and Koso Aoki, “Reversible Alignment Change of Liquid Crystals Induced by Photochromic Molecular Films,” Japanes J. Appl. Phys. 28, p. 289–292 (1989)..CrossRefGoogle Scholar
  7. 3b.
    Alan G.-S. Chen and David J. Brady, Optics Letts. 17, 1231 (1992).CrossRefGoogle Scholar
  8. 4.
    I. C. Khoo and R. Normandin, Appl. Phys. Letts. 47, 350 (1985).CrossRefGoogle Scholar
  9. 5.
    M. Eich and J. Wendorff, J. Opt. Soc. Am. B7, 1428 (1990).CrossRefGoogle Scholar
  10. 6.
    See, for example, O. Werner, B. Fisher and A. Lewis, Opt. Lett. 12, 241 (1992).CrossRefGoogle Scholar
  11. 7.
    R. A. Linke, T. Thio, J. D. Chadi and G. E. Devlin, Appl. Phys, Lett. 64 (1994).Google Scholar
  12. 8.
    A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass and J. W. Heming, Appl. Phys. Lett. 64, 821 (1994). and references thereinCrossRefGoogle Scholar
  13. 9.
    K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen and N. Peyghambarian, Nature, 371, 497 (1994).CrossRefGoogle Scholar
  14. 10.
    I. C. Khoo, H. Li and Y. Liang, Opt. Lett. 19, 1723 (1994).CrossRefGoogle Scholar
  15. 11.
    W. Helfrich, J. Chem. Phys. 51, 4092–4105 (1969). See also L. M. Blinov, “Electro-Optical and Magneto-Optical Properties of Liquid Crystals” (Wiley Interscience, 1983) Chapter 5.CrossRefGoogle Scholar
  16. 12.
    For photoconduction in fullerene, see for example, J. Mort, M. Machonon, R. Ziolo, D. R. Huffman and M. I. Ferguson, Appl. Phys. Lett. 60, 1735 (1992); Y. Wang, Nature 356, p. 585 (1992).CrossRefGoogle Scholar
  17. 13.
    I. C. Khoo, “Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena” (Wiley Interscience, NY, 1995). See also I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals” (World Scientific, Singapore, 1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • I. C. Khoo
    • 1
  1. 1.Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations