Processible Aromatic Polyamides Derived from 2,5-Bis(4-Aminophenyl)-3,4-Diphenyl Thiophene and Aromatic Diacid Chlorides

  • Won-Kyu Lee
  • Kwang-Sup Lee
  • Hyun Hoon Song
  • Soo-Min Lee

Abstract

Rigid polymers have been of great interest in recent years because of their outstanding mechanical properties and potential applications for the high performance materials. The rigid polymers, however, are almost nonprocessible and structural modifications to improve processibility have been the subject of investigation thereafter. Attempts were made by introducing the flexible linkages or nonlinear aromatic moieties in the polymer main chain1–7 and by coupling of flexible side chains.8–13 Attachment of flexible alkoxy side chains to the several rigid polymers were proven to be successful to lower the transition temperatures and to enhance the solubility of polymers. The flexible side chains apparently act as a bound solvent, also yielding a layered mesophase of the polymer chains. The layered mesophase and systematic changes with side chain length also have been of interest in these rigid polymers. In this work we prepared polyamides having bulky rigid moiety in the main chain and alkoxy side chains. We report the synthesis and properties as well as molecular packing behavior associated with the side chains.

Keywords

Layer Spacing Amorphous Halo Side Chain Length Rigid Polymer Outstanding Mechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.B. Seymour and G.S. Kirshenbaum, ed., “High Performance Polymers: Their Origin and Development”, Elsevier, NY, 1986.Google Scholar
  2. 2.
    B.P. Griffin and M.K. Cox, Brit. Polym. J. 12:147(1980).CrossRefGoogle Scholar
  3. 3.
    S.M. Lee, K.-S. Kim, K.-S. Lee, and S.-K. Lee, Polymer (Korea) 13:888(1989).Google Scholar
  4. 4.
    J.M. Rhee, K.-S. Lee, and K.-Y. Choi, Polymer (Korea) 14:448(1990).Google Scholar
  5. 5.
    M.G. Dobb and J.E. Mclntyre, Adv. Polym. Sci. 60:63(1984).Google Scholar
  6. 6.
    H.-J. Jeong, A. Kobayashi, M. Kakimoto, and Y. Imai, Polymer J. 26:373(1994).CrossRefGoogle Scholar
  7. 7.
    K.-S. Kim, S.M. Lee, K.-C. Ryu, and K.-S. Lee, Polym. Bull, in press.Google Scholar
  8. 8.
    J. Majnusz, J.M. Catala, and R.W. Lenz, Eur. Polym. J. 19:1043(1983).CrossRefGoogle Scholar
  9. 9.
    M. Ballauff, Makromol. Chem., Rapid Commun. 7:407(1986).CrossRefGoogle Scholar
  10. 10.
    M. Ballauff, Angew. Chem., Int. Ed. Engl. 28:253(1989).CrossRefGoogle Scholar
  11. 11.
    R. Stern, M. Ballauff, and G. Wegner, Makromol. Chem., Makromol. Symp. 23:373(1989).CrossRefGoogle Scholar
  12. 12.
    K.-S. Lee, J.C. Won, and J.C. Jung, Makromol. Chem. 190:1547(1989).CrossRefGoogle Scholar
  13. 13.
    K.-S. Lee, H.M. Kim, J.M. Lee, and S.M. Lee, Makromol. Chem. 192:1033(1991).CrossRefGoogle Scholar
  14. 14.
    K.-S. Lee, W.K. Lee, S.M. Lee, H.O. Kim, and B.W. Lee, Mol. Cryst. Liq. Cryst. 254:37(1994).CrossRefGoogle Scholar
  15. 15.
    M.G. Voronkov, V.E. Udel, Khim. Getewtsikl. Soedin. Akad. Nauk. Latu.S.S.K, 1965, 683; Chem. Abstr. 64:11148h(1966)..Google Scholar
  16. 16.
    W. Dilthey and E. Graef, J. Prakt. Chem. 151:275(1938).Google Scholar
  17. 17.
    M. Ballauff and G.F. Schmidt, Makromol. Chem., Rapid Commun. 8:93(1987).CrossRefGoogle Scholar
  18. 18.
    A. Adam and H.W. Spiess, Makromol. Chem., Rapid Cummun. 11:249(1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Won-Kyu Lee
    • 1
  • Kwang-Sup Lee
    • 1
  • Hyun Hoon Song
    • 1
  • Soo-Min Lee
    • 2
  1. 1.Department of Macromolecular ScienceHan Nam UniversityTaejonKorea
  2. 2.Department of ChemistryHan Nam UniversityTaejonKorea

Personalised recommendations