Surface Modification of Silicones

  • Michael J. Owen
  • Jennifer L. Fritz


The ability to controllably modify the surface properties of a material with treatments that are sufficiently thin not to significantly affect bulk properties has become an important aspect of the development and application of polymers and advanced materials. This is the case with silicone polymers such as polydimethylsiloxane (PDMS). Although PDMS is one of the lowest surface tension polymers in common use, needs exist to lower as well as raise surface energy. Examples of the former type include a variety of low-soiling, anti-deposition coatings and sealants for substrates as diverse as textiles, masonry and solar-energy devices, as well as specialized release applications such as release liners for PDMS-based silicone pressure-sensitive adhesives. The most familiar example of the latter type of need to raise surface energy is to enhance adhesion to PDMS substrates, but there are numerous other needs including biomaterials such as tissue culture surfaces with optimum cell growth characteristics, ocular materials with good tear wettability, and low friction catheter polymers.


Contact Angle Plasma Treatment Water Contact Angle Surface Modification Technique Hydrophobic Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    M.K. Chaudhury and G.M. Whitesides, Langmuir, 7:1013 (1991).CrossRefGoogle Scholar
  2. 2.
    K.L. Johnson, K. Kendall and A.D. Roberts, Proc. R. Soc. London, Ser.A. 324:301 (1971).CrossRefGoogle Scholar
  3. 3.
    M.K. Chaudhury, J. Adhesion Sci. Technol., 7:669 (1993).CrossRefGoogle Scholar
  4. 4.
    M.J. Owen, in “Silicon-Based Polymer Science,” Eds. J.M. Zeigler and F.W.G. Fearon, Advances in Chemistry Series 224, American Chemical Society, 1990, p. 720.Google Scholar
  5. 5.
    J.H. Silver, R.W. Hergenrother, J.C. Lin, F. Lim, H.B. Lin, T. Okada, M.K. Chaudhury and S.L. Cooper, submitted to J. Biomed. Mater. Res. Google Scholar
  6. 6.
    M.J. Owen and D.E. Williams, J. Adhesion Sci. Technol., 5:307 (1991).CrossRefGoogle Scholar
  7. 7.
    B.D. Ratner, in “Surface and Interfacial Aspects of Biomedical Polymers. Vol. 1. Surface Chemistry and Physics,” Ed. J.D. Andrade, Plenum Press, New York, 1985, p. 373.CrossRefGoogle Scholar
  8. 8.
    M.J. Owen in “Block Copolymers Science and Technology,” Ed. D.J. Meier, MMI Press, Symposium Ser. Vol. 3, 1983, p. 129.Google Scholar
  9. 9.
    B.D. Ratner, P.K. Weathersby, A.S. Hoffman, M.A. Kelly and L.H. Scharpen, J. Appl. Polym. Sci., 22:643 (1978).CrossRefGoogle Scholar
  10. 10.
    A. Baszkin, M.M. Boissonade, J.E. Proust, S. Tchaliovska, L. Ter-Minassian-Saraga and G. Wajs, J. Bioeng., 2:527 (1978).Google Scholar
  11. 11.
    F.J. Holly and M.J. Owen in “Physicochemical Aspects of Polymer Surfaces,” Vol. 2, Ed. K.L. Mittal, Plenum Press, New York, 1983, p. 625.Google Scholar
  12. 12.
    D.E. Williams and L.E. Davis, ACS Div. Org. Coat. Plast. Chem. Preprints, 36:249 (1976).Google Scholar
  13. 13.
    D.W. Dwight and B.R. Beck, ACS Div. Org. Coat. Plast. Chem. Preprints, 40:494 (1979).Google Scholar
  14. 14.
    Y. Suzuki, M. Kusakabe, M. Iwaki and M. Suzuki, Mater. Res. Soc. Symp. Proc. (Interfaces Polym. Met. Ceram.), 153:223 (1989).CrossRefGoogle Scholar
  15. 15.
    Y. Suzuki, C. Swapp, M. Kusakabe and M. Iwaki, Nucl. Instr. and Meth., B46:354 (1990).Google Scholar
  16. 16.
    E. Gontko, CM. Woods, K.E. Polmanteer and W.E. Reister, unpublished Dow Corning Corporation studies.Google Scholar
  17. 17.
    J. Morvan, M. Camelot, P. Zecchini and C. Roques-Carmes, J. Colloid Interface Sci., 97:149(1984).CrossRefGoogle Scholar
  18. 18.
    C.W. Lentz, Ind. Res. and Dev., 22(4): 139 (1980).Google Scholar
  19. 19.
    AD. Deiman, M. Landy and B.B. Simms, J. Polym. Sci., A1, 7:3375 (1969).Google Scholar
  20. 20.
    K. Esumi, K. Meguro, A.M. Schwartz and A.C. Zettlemoyer, Bull. Chem. Soc. Jpn., 55:3019(1982).CrossRefGoogle Scholar
  21. 21.
    J.K. Sieron and R. G. Spain, in “Environmental Effects on Polymeric Materials,” Vol. 2., Eds. D.V. Rosato and R.T. Schwartz, John Wiley and Sons, New York, 1968, p. 1617.Google Scholar
  22. 22.
    Two recent issues of J. Adhes. Sci. Technol, Vol. 7(10) (1993) and Vol. 8(4) (1994) are devoted to plasma surface modification. Also a recent conference, International Symposium on Polymer Surface Modification: Relevance to Adhesion, Las Vegas, Nevada, November 1993 reported in Vol. 8(10) (1994) and subsequent issues have numerous contributions on plasma and corona treatments.Google Scholar
  23. 23.
    M.J. Owen and P.J. Smith, J. Adhesion Sci. Technol, 8:1063 (1994).CrossRefGoogle Scholar
  24. 24.
    P.J. Smith, M. J. Owen, P.H. Holm and G.A. Toskey, Proc. IEEE CEIDP Conference, Victoria, B.C., 1992, p. 829.Google Scholar
  25. 25.
    J.R. Hollahan and G.L. Carlson, J. Appl. Polym. Sci., 14:2499 (1970).CrossRefGoogle Scholar
  26. 26.
    T. Okada and Y. Ikada, Makromol. Chem., 192:1705 (1991).CrossRefGoogle Scholar
  27. 27.
    P.M. Triolo and J. D. Andrade, J. Biomed. Mater. Res., 17:129 (1983).CrossRefGoogle Scholar
  28. 28.
    P. Feneberg and U. Krekeler, U.S. Patent 3,959,105 (1976).Google Scholar
  29. 29.
    M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey and D. Johnson, J. Colloid Interface Sci., 137:11 (1990).CrossRefGoogle Scholar
  30. 30.
    M.T. Stewart and M.W. Urban, Polym. Mater. Sci. Eng., 59:334 (1988).Google Scholar
  31. 31.
    S. R. Gaboury and M. W. Urban, Polym. Communications, 32(13):390 (1990).Google Scholar
  32. 32.
    This was a topic of considerable debate at the conference described in Ref. 22. The paper by M.A. Hozbor and M. McPherson, “Plasma Promoted Bonding of Silicone Rubbers,” is an example where hydrophilic stability was observed.Google Scholar
  33. 33.
    Y. Ikada, T. Matsunaga and M. Suzuki, Nippon Kagaku Kaishi, 6:1079 (1985).CrossRefGoogle Scholar
  34. 34.
    C.L. Lee and G.R. Homan, “Silicone Protective Coatings for High Voltage Insulators,” in: Annual Report (81 CHI668–3) Conference on Electrical Insulation and Dielectric Phenomena, p. 435, IEEE (1981).Google Scholar
  35. 35.
    R.S. Gorur, E.A. Cherney, R. Hackam and T. Orbeck, “The Electrical Performance of Polymeric Insulating Materials Under Accelerated Aging in a Fog Chamber,” IEEE Trans, on Power Delivery, 3(3): 1157 (1988).CrossRefGoogle Scholar
  36. 36.
    M.J. Owen, in “Siloxane Polymers,” Eds. S.J. Clarson and J.A. Semlyen, Prentice- Hall, Englewood Cliffs, NJ, 1993, p. 309.Google Scholar
  37. 37.
    M.J. Owen, T.M. Gentle, T. Orbeck and D.E. Williams, In “Polymer Surface Dynamics,” Ed. J.D. Andrade, Plenum Press, New York, 1988, p. 101.CrossRefGoogle Scholar
  38. 38.
    H.J. Hettlich, F. Otterbach, Ch. Mittermayer, R. Kaufmann and D. Klee, Biomaterials, 12:521 (1991).CrossRefGoogle Scholar
  39. 39.
    S.K. Rutledge and J.A. Mihelcic, in “Mater. Degrad. Low Earth Orbit, Proc. Symp.,” Eds. V. Srinivasan and B.A. Banks, Miner. Met. Mater.Soc, Warrendale, PA, 1991, p.35.Google Scholar
  40. 40.
    G.N. Taylor and T.M. Wolf, Polym. Eng. Sci., 20:1087 (1980).CrossRefGoogle Scholar
  41. 41.
    S.M. Gubanski and A.E. Vlastos, “Wettability of Naturally Aged Silicone and EPDM Composite Insulators,” IEEE Trans, on Power Delivery, 5(3): 1527 (1990).CrossRefGoogle Scholar
  42. 42.
    M. Morra, E. Occhiello and F. Garbassi, Polym-Solid Interfaces, Proc. Int. Conf. 1st, Namur, Belgium, Section IV, 407 (1992).Google Scholar
  43. 43.
    J.L. Fritz and M.J. Owen, in press, J. Adhesion. Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael J. Owen
    • 1
  • Jennifer L. Fritz
    • 1
  1. 1.Dow Corning CorporationMidlandUSA

Personalised recommendations