Miscibility of Polymer Blends at the Air/Water Interface

  • Chang Sik Ha
  • Won-Ki Lee
  • Won-Jei Cho
  • Hiroo Nakahara


The miscibiity of polymer blends has been one of the main subjects in polymer science and technology1–3. A considerable amount of works have been reported on the miscibility of two polymers in the bulk state but there are only a few studies that reveal whether the miscibility of polymer mixtures in the bulk state correlates well with that in the two dimensional state or not. Investigation of polymer monomolecular films speread at the air/water interface leads to the interest of miscibility as well as static and dynamic properties in the two-dimensional system4–8. It is not easy, however, to choose a good pair to compare the miscibility in the bulk state with that in the film spread at the air/water interface, since almost polymers do not form stable monolayers at the air/water interface. Blends of poly(methyl acrylate)(PMA) and poly(vinyl acetate)(PVAc) as well as poly(ethylene oxide)(PEO) and poly(methyl methacrylate)(PMMA) are well-known to be miscible in the bulk state and do form stable monolayers at the air/water interface5,7.


Surface Pressure Methyl Methacrylate Polymer Blend Methyl Acrylate Vinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Olabishi, L. M. Robeson, and M. T. Shaw, “Polymer-Polymer Miscibility”, Academic Press, New York (1979).Google Scholar
  2. 2.
    A. C. Fernandes, J. W. Barlow, and D. R. Paul, Polymer. 27. 1799 (1986).CrossRefGoogle Scholar
  3. 3.
    W. K. Lee, CS. Ha, and Cho W. J., Polymer, 35. 10:2229 (1994).Google Scholar
  4. 4.
    D. J. Crisp, in “Surface Phenomena in Chemistry and Biology”,Google Scholar
  5. 4a.
    F. Danielli, K. G. A. Pankhurst, and A. C. Riddiford, ed., Pergamon Press, London (1958), pp. 23–54.Google Scholar
  6. 5.
    G. L. Gains Jr., Langmuir. 7. 834 (1991).CrossRefGoogle Scholar
  7. 6.
    G. L. Gains Jr., “Insoluble monolayers at Liquid-Gas Interface”, Interscience, New York (1986).Google Scholar
  8. 7.
    M. Kawaguchi and R. Nishida, Langmuir. 6. 492 (1990).CrossRefGoogle Scholar
  9. 8.
    G. Gabrielli, M. Puggelli, and R. Faccioli, J. Colloid Interface Sci. 37. 213 (1971).CrossRefGoogle Scholar
  10. 9.
    A. Es-Sounni, and RM. Leblanc, Langmuir. 8. 1578 (1992).CrossRefGoogle Scholar
  11. 10.
    G. Gabrielli, M. Puggelli, and R. Faccioli, J. Colloid Interface Sci. 44. 177(1973)CrossRefGoogle Scholar
  12. 11.
    G. Gabrielli and P. Baglion, J. Colloid Interface Sci. 73. 582 (1980).CrossRefGoogle Scholar
  13. 12.
    D. A. Cadenhead and B. M. Kellner Jr., J. Colloid Interface Sci. 49. 143(1974).CrossRefGoogle Scholar
  14. 13.
    A. Gericke, J. Simon-Kutscher, and H. Huhnerfuss, Langmuir. 9. 2119(1993).CrossRefGoogle Scholar
  15. 14.
    M. Kawaguchi, S. Komatsu, M. Matsuzumi, and A. Takahashi, J. Colloid Interface Sci. , 102. 356 (1984).CrossRefGoogle Scholar
  16. 15.
    M. Kawaguchi, M. Tohyama, Y. Mutoh, and A. Takahashi, Langmuir. 4. 407(1988).CrossRefGoogle Scholar
  17. 16.
    M. Kawaguchi, B. B. Sauer, and H. Yu, Macromolecules. 22. 1735(1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Chang Sik Ha
    • 1
  • Won-Ki Lee
    • 1
  • Won-Jei Cho
    • 1
  • Hiroo Nakahara
    • 2
  1. 1.Department of Polymer Science and EngineeringPusan National UniversityPusanKorea
  2. 2.Department of Chemistry, Faculty of ScienceSaitama UniversityUrawa 338Japan

Personalised recommendations