Low-Temperature Materials Properties

  • Steven W. Van Sciver
Part of the The International Cryogenics Monograph Series book series (ICMS)


Before delving into the topic of helium cryogenics, it is useful to have a working knowledge of the properties of materials at low temperatures. This knowledge is useful because materials have behavior that must be taken into account when considering the problems of refrigeration, heat transfer, or storage of helium. Furthermore, many of the properties of helium are understood in terms of general models developed to treat the properties of different materials at low temperatures.


Heat Capacity Electrical Resistivity Critical Field Thermal Contraction Brillouin Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kittel, Introduction to Solid State Physics, 5th ed., Wiley, New York, 1976.Google Scholar
  2. 2.
    G. K. White, Experimental Techniques in Low Temperature Physics, 3rd ed., Monographs on Physics and Chemistry of Materials, Clarendon Press, Oxford, 1979.Google Scholar
  3. 3.
    O. V. Lounasmaa, Experimental Principles and Methods Below 1K, Academic Press, New York, 1974.Google Scholar
  4. 4.
    R. P. Reed and A. F. Clark, Materials at Low Temperatures, American Society of Metals, Metals Park, Ohio, 1983.Google Scholar
  5. 5.
    L. A. Hall, Survey of Electrical Resistivity Measurements on 16 Pure Metals in the Temperature Range 0–273 K, NBS Technical Note 365, U.S. Government Printing Office, Washington, DC, 1968.Google Scholar
  6. 6.
    R. A. Matula, Electrical Resistivity of Cu, Au, Pd, and Ag, J. Phys. Chem. Phys. Ref Data 8, 1147 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    G. T. Meaden, Electrical Resistance of Metals, Plenum Press, New York, 1965.Google Scholar
  8. 8.
    A. F. Clark, G. E. Childs, and G. H. Wallace, Electrical Resistivity of Some Engineering Alloys at Low Temperatures, Cryogenics 10, 295 (1970).CrossRefGoogle Scholar
  9. 9.
    R. Berman, Thermal Conduction in Solids, Clarendon Press, Oxford, 1976.Google Scholar
  10. 10.
    R. L. Powell and F. R. Fickett, Cryogenic Properties of Copper, International Copper Research Association, Dec. 1979.Google Scholar
  11. 11.
    J. G. Hust and L. L. Sparks, Lorenz Ratios of Technically Important Metals and Alloys, NBS Technical Note 634, U.S. Government Printing Office, Washington, DC, Feb. 1973.Google Scholar
  12. 12.
    R. J. Corruccini and J. J. Gniewek, Thermal Expansion of Technical Solids at Low Temperatures, NBS Monograph 29, U.S. Government Printing Office, Washington, DC, 1961.Google Scholar
  13. 13.
    T. H. K. Barron, J. G. Collins, and G. K. White, Thermal Expansion of Solids at Low Temperatures, Adv. Phys. 29, 609 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    R. S. Krishnan, R. Srinivasan, and S. Devanarayanan, Thermal Expansion of Crystals, Pergamon, Oxford, 1979.Google Scholar
  15. 15.
    G. K. White, Metals and Alloys: Expansion and Contraction, Adv. Cryog. Eng. 30, 407 (1984).CrossRefGoogle Scholar
  16. 16.
    R. J. Roark and W. C. Young, Formulas for Stress and Strain, 5th ed., McGraw-Hill, New York, 1975.Google Scholar
  17. 17.
    Handbook on Materials for Superconducting Machinery, Metals and Ceramics Information Center, Batelle, Columbus, Pub. # MCIC-HB-04 (Jan. 1977).Google Scholar
  18. 18.
    The present treatment is based primarily on material available in M. W. Zemansky, Heat and Thermodynamics, 5th ed., McGraw-Hill, New York, 1968; or M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics, 6th ed., McGraw-Hill, New York, 1981.Google Scholar
  19. 19.
    A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity, 2nd ed., International Series in Solid State Physics, Vol. 6, Pergamon Press, New York, 1978.Google Scholar
  20. 20.
    M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, 1975.Google Scholar
  21. 21.
    E. A. Lynton, Superconductivity, 3rd ed., Chapman Hall Ltd. Science Paperbacks, London, 1969.Google Scholar
  22. 22.
    E. W. Collings, Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys, Vols. 1 and 2, Plenum Press, New York, 1985.Google Scholar
  23. 23.
    J. E. C. Williams, Superconductivity and Its Applications, Pion Ltd., London, 1970.Google Scholar
  24. 24.
    H. A. Brechna, Superconducting Magnet Systems, Springer-Verlag, Berlin, 1973.CrossRefGoogle Scholar
  25. 25.
    M. N. Wilson, Superconducting Magnets Monographs on Cryogenics, Clarendon Press, Oxford, 1983.Google Scholar
  26. 26.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108, 1175 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    B. B. Schwartz and S. Foner, Large Scale Applications of Superconductivity, Phys. Today 30, 34 (1977).CrossRefGoogle Scholar
  28. 28.
    D. C. Larbalestier, Niobium-Titanium Superconducting Materials, in Superconducting Materials, S. Foner and B. B. Schwartz (Eds.), Plenum Press, New York, 1981.Google Scholar
  29. 29.
    D. U. Gubser, T. L. Francavilla, D. G. Howe, R. A. Muessner, and F. T. Ormand, Multifilamentary V3Ga Wire: A Critical Review, IEEE Trans. Magn. Mag-15, 385 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Steven W. Van Sciver
    • 1
  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations