Unique Metabolic Features of Docosahexaenoate Metabolism Related to Functional Roles in Brain and Retina

  • Haydee E. P. Bazan
  • Brock Ridenour
  • Dale L. Birkle
  • Nicolas G. Bazan
Part of the FIDIA Research Series book series (FIDIA, volume 4)


To define the physiological significance of the highly unsaturated phospholipids in photoreceptor and synaptic membranes, a better understanding of the metabolic pathways involved is required. Some of the aspects to be defined include the regulation of fatty acid metabolism by physiological stimuli (e. g. light), pathological alterations that occur in diseases (e. g. retinal degenerations, seizures, ischemia, neuronal degenerations, etc.) and precursor-product relationships (e. g. the role of the dietary supply of essential fatty acids).


Docosahexaenoic Acid Intravitreal Injection Phosphatidic Acid Retinal Degeneration Essential Fatty Acid Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson RE, Kelleher PA, Maude MB (1980) Metabolism of phosphatidylethanolamine in the frog retina. Biochim Biophys Acta 620: 227–235.PubMedCrossRefGoogle Scholar
  2. Anderson RE, Maude MB (1972) Lipids in ocular tissues VIII. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch Biochem Biophys 15: 270–276.CrossRefGoogle Scholar
  3. Aveldano MI, Bazan NG (1972) High content of docosahexaenoate and of total diacylglycerol in retina. Biochem Biophys Res Comm 48: 689–693.PubMedCrossRefGoogle Scholar
  4. Aveldano MI, Bazan NG (1973) Fatty acid composition and level of diacylglycerols and phosphoglycerides in brain and retina. Biochim Biophys Acta 296: 1–9.PubMedCrossRefGoogle Scholar
  5. Aveldano MI, Bazan NG (1974a) Displacement into incubation medium by albumin of highly unsaturated retina free fatty acids arising from membrane lipids. FEBS Lett 40: 53–56.PubMedCrossRefGoogle Scholar
  6. Aveldano MI, Bazan NG (1974b) Free fatty acids, diacyl-and triacylglycerols and total phospholipids in vertebrate retina: Comparison with brain, choroid and plasma. J Neurochem 23: 1127–1135.PubMedCrossRefGoogle Scholar
  7. Aveldano MI, Bazan NG (1975) Different lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols. Brain Res 100: 99–110.PubMedCrossRefGoogle Scholar
  8. Aveldano de Caldironi MI, Bazan NG (1977) Acyl groups, molecular species and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv Exp Med Biol 83: 397–404.CrossRefGoogle Scholar
  9. Aveldano de Caldironi MI, Bazan NG (1980) Composition and biosynthesis of molecular species of retina phosphoglycerides. Neurochem Internat 1: 381–392.CrossRefGoogle Scholar
  10. Aveldano MI, Bazan NG (1983) Molecular species of phosphatidylcholine,-ethanolamine,-serine and-inositol in microsomal and photoreceptor membranes of bovine retina. J Lipid Res 24: 620–627.PubMedGoogle Scholar
  11. Aveldano MI, Sprecher H (1983) Synthesis of hydroxy fatty acids from 4,7,10,13,16,19-[1-14C] docosahexaenoic acid by human plateletes. J Biol Chem 258: 9339–9343.PubMedGoogle Scholar
  12. Aveldano de Caldironi MI, Giusto NM, Bazan NG (1981) Polyunsaturated fatty acids of the retina. Prog Lipid Res 20: 49–57.CrossRefGoogle Scholar
  13. Aveldano MI, Pasquare de Garcia SJ, Bazan NG (1983) Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J Lipid Res 24: 628–638.PubMedGoogle Scholar
  14. Basinger S, Bok D, Hall M (1976) Rhodopsin in the rod outer segment plasma membrane. J Cell Biol 69: 29–31.PubMedCrossRefGoogle Scholar
  15. Bazan HEP, Bazan NG (1985) Metabolism of docosahexaenoyl groups in phosphatidic acid, and in other phospholipids of the retina. In: Horrocks L, Kanfer J, Porcellati G (eds): Phospholipids in the Nervous System, Vol 2: Physiological Roles. Raven Press, New York, pp 209–217.Google Scholar
  16. Bazan HEP, Careaga MM, Bazan NG (1981a) Propranolol increases the biosynthesis of phosphatidic acid, phosphatidylinositol and phosphatidylserine in the toad retina. Studies in the entire retina and subcellular fractions. Biochim Biophys Acta 666: 63–71.PubMedCrossRefGoogle Scholar
  17. Bazan HEP, Marcheselli VL, Careaga MM, Bazan NG (1981b) Biosynthesis and metabolism of essential and acidic phospholipids in the central nervous system. In: Bazan NG, Paoletti R, Iacono J (eds): New Trends in Nutrition, Lipid Research and Cardiovascular Diseases. Alan R Liss, New York, pp 101–1120.Google Scholar
  18. Bazan HEP, Careaga MM, Sprecher H, Bazan NG (1982a) Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo. Biochim Biophys Acta 712: 123–128.PubMedCrossRefGoogle Scholar
  19. Bazan HEP, Sprecher H, Bazan NG (1984a) De novo biosynthesis of docosahexaenoyl phosphatidic acid in bovine retinal microsomes. Biochim Biophys Acta 796: 11–19.PubMedCrossRefGoogle Scholar
  20. Bazan NG (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218: 1–10.PubMedCrossRefGoogle Scholar
  21. Bazan NG (1971) Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia. J Neurochem 18: 1379–1385.PubMedCrossRefGoogle Scholar
  22. Bazan NG (1982a) Biosynthesis of phosphatidic acid and polyenoic phospholipids in the central nervous system. In: Horrocks LA, Ansell GB, Porcellati G (eds): Phospholipids in the Nervous System Vol. I: Metabolism. Raven Press, New York, pp 49–62.Google Scholar
  23. Bazan NG (1982b) Metabolism of phospholipids in the retina. Vision Res 22: 1539–1548.PubMedCrossRefGoogle Scholar
  24. Bazan NG (1983) Metabolism of phosphatidic acid. In: Lajtha A (ed): Handbook of Neurochemistry, Vol. 3. Plenum Pub, New York, pp 17–39.Google Scholar
  25. Bazan NG, Giusto NM (1980) Docosahexaenoyl chains are introduced in phosphatidic acid during de novo synthesis in retinal microsomes. In: Kates M, Kuksis A (eds): Control of Membrane Fluidity. Humana Press, New Jersey, pp 223–236.CrossRefGoogle Scholar
  26. Bazan NG, Reddy TS (1985) Retina. In: Lajtha A (ed): Handbook of Neurochemistry, Vol. 8. Plenum Press, New York, pp. 507–575.Google Scholar
  27. Bazan NG, Aveldano MI, Bazan HEP, Giusto MN (1976a) Metabolism of retina acylglycerides and arachidonic acid. In: Paoletti R, Porcellati G, Jacini G (eds): Lipids, Vol. I. Raven Press, New York, pp 89–97.Google Scholar
  28. Bazan NG, Ilincheta de Boschero MG, Giusto NM, Bazan HEP (1976b) De novo glycerolipid biosynthesis in the toad and cattle retina. Redirecting of the pathway by propranolol and phentolamine. Adv Exp Med Biol 72: 139–149.PubMedCrossRefGoogle Scholar
  29. Bazan NG, Aveldano de Caldironi MI, Giusto NM, Rodriguez de Turco EB (1981) Phosphatidic acid in the central nervous system. Prog Lipid Res 20: 307–313.PubMedCrossRefGoogle Scholar
  30. Bazan NG, di Fazio de Escalante MS, Careaga MM, Bazan HEP, Giusto NM (1982) High content of 22:6 (docosahexaenoate) and active [2-3H]glycerol metabolism of phosphatidic acid from photoreceptor membranes. Biochim Biophys Acta 712: 702–706.PubMedCrossRefGoogle Scholar
  31. Bazan NG, Rodriguez de Turco EB, Morelli de Liberti SA (1982b) Free arachidonic acid and membrane lipids in the central nervous system during bicuculline-induced status epilepticus. Adv Neurology 34: 305–310.Google Scholar
  32. Bazan NG, Birkle DL, Reddy TS (1984b) Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem Biophys Res Comm 125: 741–747.PubMedCrossRefGoogle Scholar
  33. Bazan NG, Birkle DL, Reddy TS (1985a) Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degeneration. In: LaVail MM, Anderson G, Hollyfield J (eds): Retinal Degeneration: Contemporary Experimental and Clinical Studies. Alan R. Liss, Inc., New York, pp 159–187.Google Scholar
  34. Bazan NG, Reddy TS, Redmond TM, Wiggert B, Chader GJ (1985b) Endogenous fatty acids are covalently and non-covalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J Biol Chem 260: 13677–13680.PubMedGoogle Scholar
  35. Birkle DL, Bazan NG (1986) The arachidonic acid cascade and phospholipid and decosahexaenoic acid metabolism in the retina. In: Osborne NO, Chader G (eds): Progress in Retinal Research. Pergamon Press, London, pp. 309–335.Google Scholar
  36. Doly M, Braguet P, Bonhomme B, Meyniel G (1984) Effects of lipid peroxidation on the isolated rat retina. Ophthalmic Res 16: 292–296.PubMedCrossRefGoogle Scholar
  37. Dorman RV, Dreyfus H, Freysz L, Horrocks LA (1977) Ether lipid content of phosphoglycerides from the retina and brain of chicken and calf. Biochim Biophys Acta 486: 55–59.CrossRefGoogle Scholar
  38. Fliesler SY, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22: 79–131.PubMedCrossRefGoogle Scholar
  39. Futterman S, Downer JL, Hendrickson A (1971) Effect of essential fatty acid deficiency on the fatty acid composition, morphology and electroretinographic response of the retina. Inv Ophthalmol 10: 151–154.Google Scholar
  40. Giusto NM, Bazan NG (1979) Phosphatidic acid of retinal microsomes contains a high proportion of docosahexaenoate. Biochem Biophys Res Comm 91: 791–794.PubMedCrossRefGoogle Scholar
  41. Giusto NM, Bazan NG (1983) Anoxia-induced production of methylated and free fatty acids in retina, cerebral cortex and white matter. Comparison with triglycerides and with other tissues. Neurochem Pathol 1: 17–41.CrossRefGoogle Scholar
  42. Giusto NM, Ilincheta de Boschero MG, Bazan NG (1983) Accumulation of phosphatidic acid in microsomes from propranolol-treated retinas during short-term incubations. J Neurochem 40: 563–568.PubMedCrossRefGoogle Scholar
  43. Ilincheta de Boschero MG, Bazan NG (1982) Selective modification in the de novo biosynthesis of retinal phospholipids and glycerides by propranolol or phentolamine. Biochem Pharmacol 31: 1049–1055.CrossRefGoogle Scholar
  44. Ilincheta de Boschero MG, Bazan NG (1983) Reversibility of propranolol-induced changes in the biosynthesis of monoacylglycerol, diacylglycerol, triacylglycerol, and phospholipids in the retina. J Neurochem 40: 260–266.CrossRefGoogle Scholar
  45. Lamptey MA, Walker BL (1976) A possible essential role for dietary linolenic acid in the development of the young rat. J Nutr 106: 86–96.PubMedGoogle Scholar
  46. Neuringer M, Connor WE, Van Petten C, Bastard L (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73: 212–215.CrossRefGoogle Scholar
  47. Papermaster DS, Schneider BG (1982) Biosynthesis and morphogenesis of outer segment membranes in vertebrate cell. In: McDewitt DS (ed): Cell Biology of the Eye. Academic Press, Inc, New York; pp. 475–531.CrossRefGoogle Scholar
  48. Reddy TS, Bazan NG (1984a) Activation of polyunsaturated fatty acids by rat tissues in vitro. Lipids 19: 987–989.PubMedCrossRefGoogle Scholar
  49. Reddy TS, Bazan NG (1984b) Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in retina. Curr Eye Res 3: 1225–1232.PubMedCrossRefGoogle Scholar
  50. Reddy TS, Bazan NG (1985a) Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in synaptic plasma membranes of cerebrum, cerebellum and brain stem of rat brain. J Neurosci Res 13: 381–390.PubMedCrossRefGoogle Scholar
  51. Reddy TS, Bazan NG (1985b) Synthesis of docosahexaenoyl-, arachidonoyl-and palmitoyl-coenzyme A in ocular tissues. Exp Eye Res 41: 87–95.PubMedCrossRefGoogle Scholar
  52. Reddy TS, Sprecher H, Bazan NG (1984) Long chain acyl coenzyme A synthetase from rat brain microsomes: Kinetic studies using [1-14C] docosahexaenoic acid substrate. Eur J Biochem 145: 21–29.PubMedCrossRefGoogle Scholar
  53. Reddy TS, Birkle D, Armstrong D, Bazan NG (1985) Change in content, incorporation and lipoxygenation of docosahexaenoic acid in retina and retinal pigment epithelium in canine ceroid lipofuscinosis. Neurosci Lett 59: 67–72.PubMedCrossRefGoogle Scholar
  54. Tinoco J, Miljanich P, Medwadowski B (1977) Depletion of docosahexaenoic acid in retinal lipids of rats fed a linolenic acid-deficient, linoleic acid-containing diet. Biochim Biophys Acta 486: 575–580.PubMedCrossRefGoogle Scholar
  55. Van Rollins M, Baker R, Sprecher HW, Murphy RC (1984) Oxidation of docosahexaenoic acid by rat liver microsomes. J Biol Chem 259: 5779–5783.Google Scholar
  56. Wheeler TG, Benolken RM, Anderson RE (1975) Visual membranes, Specifics of fatty acid precursors for the electrical response to illumination. Science 188: 1312–1314.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Haydee E. P. Bazan
    • 1
  • Brock Ridenour
    • 1
  • Dale L. Birkle
    • 1
  • Nicolas G. Bazan
    • 1
  1. 1.Louisiana State University Medical School, LSU Eye Center and EyeEar Nose and Throat HospitalNew OrleansUSA

Personalised recommendations