Advertisement

Phosphoprotein B-50 and Polyphosphoinositide-Dependent Signal Transduction in Brain

  • W. H. Gispen
  • P. N. E. de Graan
  • L. H. Schrama
  • J. Eichberg
Part of the FIDIA Research Series book series (FIDIA, volume 4)

Abstract

During the past several years, an impressive body of information has been accumulating that polyphosphoinositides (PPtdIns) metabolism plays a central role in cellular signal transduction (Berridge and Irvine, 1984). The prevailing view is that in response to receptor activation by a variety of hormones, neurotransmitters and other external stimuli, a plasma membrane pool of phosphatidylinositol-bisphosphate (PtdIns(4, 5)P 2) undergoes rapid phosphodiesteratic cleavage to yield two biologically active products: 1, 2 diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP 3). Diacylglycerol is considered to activate the widely distributed Ca2+ and phospholipid-dependent protein kinase C which is capable of phosphorylating many, largely uncharacterized, cellular proteins, whereas InsP 3 is believed to interact to trigger the release of sequestered Ca2+ from non-mitochondrial sites into the cytosol. The simultaneous processes of protein phosphorylation and Ca2+ mobilization are thought to constitute synergistic events which are integral to a large number of cellular responses (Nishizuka, 1984).

Keywords

Protein Phosphorylation Inositol Phosphate Tetanic Stimulation Synaptic Plasma Membrane Synaptosomal Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif AA (1983) Metabolism of phosphoinositides. In: Lajtha A (ed): Handbook of Neurochemistry. Plenum Press, New York; Vol. 3, pp. 91–131.Google Scholar
  2. Abdel-Latif AA, Akhtar RA, Hawthorne JN (1977) Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with |32P|-phosphate. Biochem J 162: 61–73.PubMedGoogle Scholar
  3. Aloyo VJ, Zwiers H, Gispen WH (1982a) B-50 protein kinase and kinase C in rat brain. Progr Brain Res 56: 303–315.CrossRefGoogle Scholar
  4. Aloyo VJ, Zwiers H, Gispen WH (1982b) ACTH(l-24) releases a protein from synaptosomal plasma membranes. J Neurochem 38: 871–875.PubMedCrossRefGoogle Scholar
  5. Aloyo VJ, Zwiers H, Gispen WH (1983) Phosphorylation of B-50 protein by calcium-activated phospholipid-dependent protein kinase and B-50 protein kinase. J Neurochem 41: 649–653.PubMedCrossRefGoogle Scholar
  6. Bär PR, Schotman P, Gispen WH, Tielen AM, Lopes da Silva FH (1980) Changes in synaptic membrane phosphorylation after tetanic stimulation in the dentate area of the rat hippocampal slices. Brain Res 198: 478–484.PubMedCrossRefGoogle Scholar
  7. Bär PR, Wiegant F, Lopes da Silva FH, Gispen WH (1984) Tetanic Stimulation affects the metabolism of phosphoinositides in hippocampal slices. Brain Res 321: 381–385.PubMedCrossRefGoogle Scholar
  8. Baker PF (1984) Multiple controls for secretion? Nature 310: 629–630.PubMedCrossRefGoogle Scholar
  9. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  10. Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonists-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206: 587–595.PubMedGoogle Scholar
  11. Brown E, Kendall DA, Nahorski SR (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices. I. receptor characterisation. J Neurochem 42: 1379–1387.PubMedCrossRefGoogle Scholar
  12. Cockcroft S, Gomperts BD (1985) Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314: 534–536.PubMedCrossRefGoogle Scholar
  13. Das S, Rand RP (1984) Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun 124: 491–496.PubMedCrossRefGoogle Scholar
  14. Deshmukh DS, Kuizon S, Brockerhoff H (1984) Mutual stimulation by phosphatidylinositol 4-phosphate and myelin basic protein of their phosphorylation by the kinases solubilized from rat brain myelin. Life Sci 34: 259–264.PubMedCrossRefGoogle Scholar
  15. Fisher SK, Agranoff BW (1981) Enhancement of the muscarinic synaptosomal phospholipid effect by the ionophore A23187. J Neurochem 37: 968–977.PubMedCrossRefGoogle Scholar
  16. Fischer SK, Agranoff BW (1985) The biochemical basis and functional significance of enhanced phosphatidate and phosphoinositide turnover. In: Eichberg J (ed): Phospholipids in nervous tissues. John Wiley and Sons, ew York, pp. 241–296.Google Scholar
  17. Fisher SK, Boast CA, Agranoff BW (1980) The muscarinic stimulation of phospholipid labeling in hippocampus is independent of its cholinergic input. Brain Res 189: 284–288.PubMedCrossRefGoogle Scholar
  18. Fisher SK, Frey KA, Agranoff BW (1981) Loss of muscarinic receptors and of stimulated phospholipid labeling in ibotinate-treated hippocampus. J Neurosci 1: 1407–1413.PubMedGoogle Scholar
  19. Fisher SK, Figueiredo JC, Bartus RT (1984) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J Neurochem 42: 1171–1179.CrossRefGoogle Scholar
  20. Gispen WH (1986) Phosphoprotein B-50 and phosphoinositides in brain synaptic plasma membranes: a possible feedback relationship. Trans Biochem Soc UK, 14: 163–165.Google Scholar
  21. Gispen WH, Zwiers H (1985) Behavioral and neurochemical effects of ACTH. In: Lajtha A (ed): Handbook of Neurochemistry. Plenum Press, New York; Vol 8, pp. 375–412.Google Scholar
  22. Gispen WH, Leunissen JLM, Oestreicher AB, Verkleij AJ, Zwiers H (1985) Presynaptic localization of B-50 phosphoprotein: the ACTH sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res 328: 381–385.PubMedCrossRefGoogle Scholar
  23. Gonzalez-Sastre F, Eichberg J, Hauser G (1971) Metabolic pools of polyphosphoinositides in rat brain. Biochim Biophys Acta 248: 96–104.PubMedCrossRefGoogle Scholar
  24. Gremiich H-U, Fringeli U-P, Schwyzer R (1983) Conformational changes of adrenocorticotropin peptides upon interaction with lipid membranes revealed by infra-red attenuated total reflection spectroscopy. Biochemistry 22: 4257–4263.CrossRefGoogle Scholar
  25. Gysin B, Schwyzer R (1984) Hydrophobic and electrostatic interactions between adrenocorticotropin-(l-24)-tetracosapeptide and lipid vesicles. Amphiphilic primary structures. Biochemistry 23: 1811–1818.PubMedCrossRefGoogle Scholar
  26. Hershkowitz M, Zwiers H, Gispen WH (1982) The effects of ACTH on rat brain synaptic plasma membrane lipid fluidity. Biochim Biophys Acta 692: 495–497.PubMedCrossRefGoogle Scholar
  27. Irvine RF, Letcher AJ, Laner DJ, Downes CP (1984) Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem J 223: 237–243.PubMedGoogle Scholar
  28. Janowsky A, Labarca R, Paul SM (1984) Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci 35: 1953–1961.PubMedCrossRefGoogle Scholar
  29. Jolies J, Schrama LH, Gispen WH (1981a) Calcium-dependent turnover of brain polyphosphoinostides after prelabelling in vivo. Biochim Biophys Acta 666: 90–98.CrossRefGoogle Scholar
  30. Jolies J, Zwiers H, Dekker A, Wirtz KWA, Gispen WH (1981b) Corticotropin-(l-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem J 194: 283–291.Google Scholar
  31. Jolies J, Zwiers H, Van Dongen C, Schotman P, Wirtz KWA, Gispen WH (1980) Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation. Nature 286: 623–625.CrossRefGoogle Scholar
  32. Jork R, De Graan PNE, Van Dongen CJ, Zwiers H, Matthies H, Gispen WH (1984) Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metabolism in rat hippocampus. Brain Res 291: 73–81.PubMedCrossRefGoogle Scholar
  33. Kristjansson GI, Zwiers H, Oestreicher AB, Gispen WH (1982) Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue. J Neurochem 39: 371–378.PubMedCrossRefGoogle Scholar
  34. Labarca R, Janowsky A, Patel J, Paul SM (1984) Phorbol esters inhibit agonist-induced |3H|-inositol-1-phosphate accumulation in rat hippocampal slices. Biochem Biophys Res Commun 123: 703–709.PubMedCrossRefGoogle Scholar
  35. Lapetina ET, Watson SP, Cuatrecasas P (1984) Myo-inositol 1, 4, 5-trisphosphate stimulates protein phosphorylation in saponin-permeabilized human platelets. Proc Natl Acad Sci USA 81: 7431–7435.PubMedCrossRefGoogle Scholar
  36. Litosch I, Wallis C, Fain JN (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J Biol Chem, 260: 5464–5471.PubMedGoogle Scholar
  37. Mahler HR, Kleine LP, Ratner N, Sörensen RG (1982) Identification and topography of synaptic phosphoproteins. Progr Brain Res 56: 27–48.CrossRefGoogle Scholar
  38. Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–697.PubMedCrossRefGoogle Scholar
  39. Oestreicher AB, Dekker LV, Gispen WH (1985) A radioimmunoassay (RIA) for the phosphoprotein B-50: Distribution in rat brain. Neurosci Letters Suppl 22, 8560.Google Scholar
  40. Oestreicher AB, Van Dongen CJ, Zwiers H, Gispen WH (1983) Affinity-purified anti-B-50 protein antibody: Interference with the function of the phosphoprotein B-50 in synaptic plasma membranes, J Neurochem 41:331–340.PubMedCrossRefGoogle Scholar
  41. Oestreicher AB, Zwiers H, Schotman P, Gispen WH (1981) Immunohistochemical localization of a phosphoprotein (B-50) isolated from rat brain synaptosomal plasma membranes. Brain Res Bull 6: 145–153.PubMedCrossRefGoogle Scholar
  42. Routtenberg A, Lovinger D, Steward O (1985) Selective increase in the phosphorylation of a 47 kD protein (F1) directly related to long-term potentiation. Behav Neural Biol 43: 3–11.PubMedCrossRefGoogle Scholar
  43. Schacht J, Agranoff BW (1972) Effects of acetylcholine on labeling of phosphatidate and phosphoinositides by |32P|-orthophosphate in nerve ending fractions of guinea pig cortex. J Biol Chem 247: 771–777.PubMedGoogle Scholar
  44. Sherman WR, Leavitt AL, Honchar MP, Hallcher LM, Phillips BE (1981) Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J Neurochem 36: 1947–1951.PubMedCrossRefGoogle Scholar
  45. Sörensen RG, Kleine LP, Mahler HR (1981) Presynaptic localization of phosphoprotein B-50. Brain Res Bull 7: 57–61.PubMedCrossRefGoogle Scholar
  46. Van Dongen CJ (1985) Phosphoprotein B-50 and polyphosphoinositides in rat brain: Target for neuromodulation by ACTH. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  47. Van Dongen CJ, Hershkowitz M, Zwiers H, De Laat S, Gispen WH (1983) Lipid fluidity and phosphoinositide metabolism in rat brain membranes of aged rats: Effects of ACTH(l-24). In: Gispen WH, Traber J (eds): Aging of the brain. Elsevier Sci Publ, Amsterdam; pp. 101–104.Google Scholar
  48. Van Dongen CJ, Zwiers H, Gispen WH (1984) Purification and partial characterization of the phosphatidylinositol 4-phosphate kinase from rat brain. Biochem J 223: 197–203.PubMedGoogle Scholar
  49. Van Dongen CJ, Zwiers H, De Graan PNE, Gispen WM (1985) Modulation of the activity of and phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein. Biochem Biophys Res Commun 128: 1219–1227.PubMedCrossRefGoogle Scholar
  50. Van Rooijen LAA (1984) Polyphosphoinositide phosphodiesterase: Characterization and physiological significance in brain. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands.Google Scholar
  51. Van Rooijen LAA, Seguin EB, Agranoff BW (1983) Phosphodiesteratic breakdown of endogenous polyphosphoinositides in nerve ending membranes. Biochem Biophys Res Commun 112: 919–926.PubMedCrossRefGoogle Scholar
  52. Verhallen PFJ, Demel RA, Zwiers H, Gispen WH (1984) Adrenocorticotropic hormone (ACTH)-lipid interactions. Implications for involvement of amphipathic helix formation. Biochim Biophys Acta 775: 246–254.PubMedCrossRefGoogle Scholar
  53. Vicentini LM, Di Virgilio F, Ambrosini A, Pozzan T, Meldolesi J (1985) Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC12 cells. Biochem Biophys Res Commun 127: 310–317.PubMedCrossRefGoogle Scholar
  54. Weller M (1979) Protein phosphorylation. PION Ltd, London.Google Scholar
  55. Whitman MR, Epstein J, Cantley L (1984) Inositol 1, 4, 5-trisphosphate stimulates phosphorylation of a 62,000-dalton protein in monkey fibroblast and bovine brain cell lysates. J Biol Chem 259: 13652–13655.PubMedGoogle Scholar
  56. Witter A (1979) On the presence of receptors for ACTH-neuropeptides in the brain. In: Pepeu GC, Kuhar M, Enna L (eds): Receptors for neurotransmitters and peptide hormones. Raven Press, New York, pp. 407–414.Google Scholar
  57. Zwiers H, Schotman P, Gispen WH (1980) Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes. J Neurochem 34: 1689–1699.PubMedCrossRefGoogle Scholar
  58. Zwiers H, Tonnaer J, Wiegant VM, Schotman P, Gispen WH (1979) ACTH-sensitive protein kinase from rat brain membranes. J Neurochem 33: 247–256.PubMedCrossRefGoogle Scholar
  59. Zwiers H, Veldhuis D, Schotman P, Gispen WH (1976) ACTH, cyclic nucleotides and brain protein phosphorylation in vitro. Neurochem Res 1: 669–677.CrossRefGoogle Scholar
  60. Zwiers H, Verhaagen J, Van Dongen CJ, De Graan PNE, Gispen WH (1985) Resolution of rat brain synaptic phosphoprotein B-50 into multiple forms by two dimensional electrophoresis: evidence for multi-site phosphorylation. J Neurochem 44: 1083–1090.PubMedCrossRefGoogle Scholar
  61. Zwiers H, Wiegant VM, Schotman P, Gispen WH (1978) ACTH-induced inhibition of endogenous rat brain protein phosphorylation in vitro: structure-activity. Neurochem Res 3: 455–463.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. H. Gispen
    • 1
  • P. N. E. de Graan
    • 1
  • L. H. Schrama
    • 1
  • J. Eichberg
    • 1
    • 2
  1. 1.Division of Molecular Neurobiology, Rudolf Magnus Institute for Pharmacology, Institute of Molecular BiologyState University of UtrechtUtrechtThe Netherlands
  2. 2.Department of Biochemical and Biophysical SciencesUniversity of HoustonHoustonUSA

Personalised recommendations