Second Messenger Generation and Secretion in PC12 Cells. Role of Ca++ and Phosphoinositide Hydrolysis

  • L. M. Vicentini
  • A. Ambrosini
  • F. Di Virgilio
  • T. Pozzan
  • J. Meldolesi
Conference paper
Part of the FIDIA Research Series book series (FIDIA, volume 4)


PC12 is a line of neurosecretory cells originally developed by Greene and Tischler (1976) from a rat pheochromocytoma. This line has been extensively used in a number of laboratories around the world. Morphologically, growing PC12 cells resemble chromaffin cells of the adrenal medulla, although their secretion granules are smaller and less numerous (Greene and Tischler, 1976, 1982; Tischler and Greene, 1978; Watanabe et al., 1983). Because of this and other differences with respect to chromaffin cells, PC12 are now considered to be undifferentiated sympatoblasts. Their major catecholamine is dopamine, accumulated within secretory granules together with noradrenaline (Greene and Tischler, 1976, 1982; Rebois et al., 1980). Other neurotransmitters are synthesized in PC12 cells. Among these, acetylcholine is stored in organelles (not yet identified unambiguously), which are heavier than regular synaptic vesicles and lighter than the bulk of dopamine containing granules (Schubert et al., 1977). Peptides (enkephalins; neurotensin; Tischler et al., 1983; Panerai and Meldolesi, in preparation), as well as proteins typical of chromaffin and other secretory organelles (chromogranin A; secretogranin; Lee and Huttner, 1983) are present in PC12 cells, but their possible colocalization with dopamine has not been established with certainty yet.


PC12 Cell Nerve Growth Factor Muscarinic Receptor Transmitter Release Neurosecretory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



nerve growth factor


Phorbol-12 myristate - 13 - acetate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker PF (1984) Nature 310:629–630.PubMedCrossRefGoogle Scholar
  2. Berridge MJ and Irvine RF (1984) Nature 312:315–321.PubMedCrossRefGoogle Scholar
  3. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U and Nishizuka Y (1982) J Biol Chem 257:7847–7851.PubMedGoogle Scholar
  4. Cochet G, Gill GN, Meisenhelder J, Cooper JA, Hunter T, (1984) J Biol Chem 259: 2553–2558.PubMedGoogle Scholar
  5. Greene LA and Tischler AS (1976) Proc Natl Acad Sci USA 73:2424–2428.PubMedCrossRefGoogle Scholar
  6. Greene LA and Tischler AS (1982) Adv Cell Neurobiol 3:373–414.Google Scholar
  7. Greene LA (1984) Trends Neurosci 9:91–94.CrossRefGoogle Scholar
  8. Jacobs S, Sahyoun NE, Saltiel AR and Cuatrecasas P (1983) Proc Natl Acad Sci USA 80:6211–6213.PubMedCrossRefGoogle Scholar
  9. Jumblatt JE and Tischler AS (1982) Nature 297:152–154.PubMedCrossRefGoogle Scholar
  10. Kelleher DJ, Pessin JE, Ruho AE and Johnson GL (1984) Proc Natl Acad Sci USA 81:4316–4320.PubMedCrossRefGoogle Scholar
  11. Lee RWH and Huttner WB (1983) J Biol Chem 258:11326–11334.PubMedGoogle Scholar
  12. McKinney M and Richelson E (1984) Ann Rev Pharmacol Toxicol 24:121–146.CrossRefGoogle Scholar
  13. Meldolesi J, Hattner WB, Tsien RY and Pozzan T (1984) Proc Natl Acad Sci USA 81:620–624.PubMedCrossRefGoogle Scholar
  14. Michell RH (1982) Trends Biochem Sci 8:263–265.CrossRefGoogle Scholar
  15. Nishizuka Y (1984) Nature 308:693–698PubMedCrossRefGoogle Scholar
  16. Pozzan T, Gatti G, Dozio N, Vicentini ML and Meldolesi J (1984) J Cell Biol 99:628–638.PubMedCrossRefGoogle Scholar
  17. Rebois RV, Reynolds EE, Toll L and Howard BD (1980) Biochemistry 19:1240–1248.PubMedCrossRefGoogle Scholar
  18. Reichardt LF and Kelly RB (1983) Annu Rev Biochem 52:871–926.PubMedCrossRefGoogle Scholar
  19. Rink TJ, Sanchez A and Hallam TJ (1983) Nature 305:317–319.PubMedCrossRefGoogle Scholar
  20. Rudy B, Kinsehenbaum B and Greene LA (1982) Neuroscience 2:1405–1411.PubMedGoogle Scholar
  21. Saito I, Dozio N and Meldolesi J (1985) Neuroscience 14:1163–1174.PubMedCrossRefGoogle Scholar
  22. Schubert D, Heinemann S and Kidokoro Y (1977) Proc Natl Acad Sci USA 74:2579–2583.PubMedCrossRefGoogle Scholar
  23. Sibley DR, Nambi P, Peters JR and Lefkowitz RJ (1984) Biochem Biophys Res Comm 121:973–979.PubMedCrossRefGoogle Scholar
  24. Tischler AS and Greene LA (1978) Lab Invest 39:77–89.PubMedGoogle Scholar
  25. Tischler AS, Lee YC, Slayton VW, Bloom SR (1983) Life Sci 33:347–351.PubMedCrossRefGoogle Scholar
  26. Tsien RY, Pozzan T and Rink TJ (1982) J Cell Biol 94:325–334.PubMedCrossRefGoogle Scholar
  27. Vicentini LM and Meldolesi J (1984) Biochim Biophys Res Comm 121:538–544.CrossRefGoogle Scholar
  28. Vicentini LM, Ambrosini A, Di Virgilio F, Pozzan T and Meldolesi J (1985a) J Cell Biol 100:1330–1335.PubMedCrossRefGoogle Scholar
  29. Vicentini LM, Di Virgilio F, Ambrosini A, Pozzan T and Meldolesi J (1985b) Biochim Biophys Res Comm 127:310–317.CrossRefGoogle Scholar
  30. Watanabe O, Torda M and Meldolesi J (1983) Neuroscience 10:1011–1024.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • L. M. Vicentini
    • 1
  • A. Ambrosini
    • 1
    • 2
  • F. Di Virgilio
    • 3
    • 4
  • T. Pozzan
    • 3
    • 4
  • J. Meldolesi
    • 1
    • 2
  1. 1.Department of PharmacologyUniversity of MilanoItaly
  2. 2.National Research Council Center of CytopharmacologyUniversity of MilanoItaly
  3. 3.Institute of General PathologyUniversity of PadovaItaly
  4. 4.National Research Council Center for the Physiology of MitochondriaUniversity of PadovaItaly

Personalised recommendations